ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 6.1. ОСНОВНЫЕ ПРЕДПОСЫЛКИ НАУКИ О СОПРОТИВЛЕНИИ МАТЕРИАЛОВ

При исследовании прочности, жесткости и устойчивости элементов конструкций в сопротивлении материалов используют ряд предпосылок (допущений), упрощающих расчеты. Эти предпосылки, как показывают эксперименты, а также исследования, проведенные более строгими методами теории упругости, можно использовать при решении большинства задач, рассматриваемых в сопротивлении материалов. В некоторых случаях, специально оговариваемых, часть допущений использовать нельзя, так как это дало бы неправильные результаты.

Основные предпосылки в сопротивлении материалов следующие.

1. Материал конструкции является однородным и сплошным, т. е. его свойства не зависят от формы и размеров тела и одинаковы во всех его точках.

Это положение позволяет не учитывать дискретную, атомистическую структуру вещества и тем более движение отдельных молекул, составляющих тело. Оно применяется даже при расчете конструкций из такого неоднородного материала, как бетон, состоящего из щебня, связанного цементным раствором. Это можно делать потому, что размеры отдельных частиц материала невелики по сравнению с размерами сечений элементов конструкции.

Данная предпосылка позволяет, рассматривая при теоретическом анализе бесконечно малый элемент конструкции, наделять его свойствами, которыми обладает объем тела реальных размеров.

2. Материал конструкции изотропен, т. е. свойства его по всем направлениям одинаковы.

Эта предпосылка используется при решении большинства задач сопротивления материалов, хотя для некоторых материалов она весьма условна (например, для дерева, свойства которого в направлениях вдоль и поперек волокон различны). Такие материалы, свойства которых в различных направлениях различны, называются анизотропными. При решении некоторых задач необходимо учитывать различные свойства материала в различных направлениях, т. е. его анизотропию.

3. Материал конструкции обладает свойством идеальной упругости, т. е. способностью полностью восстанавливать первоначальные форму и размеры тела после устранения причин, вызвавших его деформацию. Деформация идеально упругого тела в каждый момент времени зависит только от нагрузок, действующих в этот момент на тело, и не зависит от того, в какой последовательности нагрузки приложены.

Эта предпосылка справедлива лишь при напряжениях, не превышающих для данного материала определенной, постоянной величины, называемой пределом упругости. При напряжениях, превышающих предел упругости, в материале возникают или пластические (остаточные) деформации, не исчезающие после снятия нагрузка, или упруго-пластические — частично исчезающие.

Предпосылка об идеальной упругости материала используется при решении большинства задач сопротивления материалов.

4. Деформации материала конструкции в каждой его точке прямо пропорциональны напряжениям в этой точке.

Данная предпосылка, впервые сформулированная Р. Гуком, называется законом Гука.

Закон Гука справедлив для большинства материалов, но для каждого из них лишь при напряжениях, не превышающих некоторой величины (предела пропорциональности). Этот закон используется при решении большинства задач сопротивления материалов.

5. Деформации конструкции предполагаются настолько малыми, что можно не учитывать их влияния на взаимное расположение нагрузок и на расстояния от нагрузок до любых точек конструкции.

Вопрос о возможности применения этой предпосылки решается в каждом отдельном случае с учетом не только вида конструкции, но также характера и величины действующей на нее нагрузки. Так, например, при расчете балки, изображенной на рис. 11.1, а, можно не учитывать ее деформации (при определении усилий в ней), если прогиб (дельта) значительно меньше высоты h поперечного сечения. При расчете же балки, показанной на рис. 11.1, б, ее деформацию можно не учитывать даже тогда, когда прогиб больше высоты Н, при условии, что он невелик по сравнению с длиной бруса I.

6. Результат воздействия на конструкцию системы нагрузок равен сумме результатов воздействия каждой нагрузки в отдельности.

Это положение носит название принципа независимости действия сил. Его часто называют также принципом наложения. Он применим в тех случаях, когда могут быть использованы закон Гука (см. выше — п. 4) и предпосылка о малости деформаций (см. п. 5), так как является их следствием.

Рис. 11.1

Рис. 12.1

Из принципа наложения следует, что перемещения точек конструкции и напряжения в ней прямо пропорциональны величине нагрузки.

Рассмотрим брус, изображенный на рис. 12.1 , а, нагруженный силой Р, моментом и равномерно распределенной нагрузкой q. Из принципа независимости действия сил следует, что, например, прогиб б конца бруса от нагрузок , равен сумме прогибов (рис. 12.1, б, в, г) от действия каждой нагрузки в отдельности, т. е.

Аналогично можно найти прогибы любых других точек бруса, внутренние усилия в его поперечных сечениях и напряжения.

Принцип независимости действия сил не распространяется на работу внешних и внутренних сил и на потенциальную энергию (см. § 6.2).

7. Поперечные сечения бруса, плоские до приложения к нему нагрузки, остаются плоскими и при действии нагрузки.

Эта предпосылка называется гипотезой плоских сечений, или гипотезой Бернулли. Она играет исключительно важную роль в сопротивлении материалов и используется при выводе большинства формул для расчета брусьев.

<< Предыдущий параграф Следующий параграф >>
Оглавление