ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 1.7. ВНУТРЕННИЕ УСИЛИЯ

В § 2.1 рассматривались различные внешние нагрузки (сосредоточенные и распределенные, силовые и моментные), встречающиеся при расчете конструкций. Внешние нагрузки, действующие на сооружение, вызывают появление в нем внутренних усилии (см. § 3.1). При действии на брус внешних нагрузок, расположенных в одной плоскости, проходящей через ось бруса (т. е. в случае плоского действия сил), в каждом поперечном сечении бруса возникают внутренние силовые факторы (усилия), действующие в этой же плоскости, а именно (рис. 1.7):

Рис. 1.7

а) продольная сила приложенная в центре тяжести сечения, действующая перпендикулярно к сечению;

б) поперечная сила Q, действующая в плоскости поперечного сечения, проходящая через его центр тяжести;

в) изгибающий момент действующий в плоскости, перпендикулярной к поперечному сечению. Изгибающий момент обозначается также (где индекс у или указывает на ось, расположенную в поперечном сечении бруса, относительно которой действует момент) или просто М.

Изгибающий момент в поперечном сечении считается положительным, когда на левом торце правой части бруса он направлен по часовой стрелке, а на правом торце левой части — против часовой стрелки. Продольная сила N в сечении положительна при растяжении. Поперечная сила Q положительна, когда на левом торце правой части бруса она направлена снизу вверх, а на правом торце левой части — сверху вниз; положительная поперечная сила стремится вращать отсеченную часть бруса (на которую она действует) по часовой стрелке — относительно любой точки С, расположенной на внутренней нормали к поперечному сечению. Положительные направления внутренних усилий показаны на рис. 1.7 (в аксонометрии) и 2.7.

Из рис. 2.7 следует, что при положительном изгибающем моменте верхние волокна бруса испытывают сжатие (укорочение), а нижние — растяжение ( удлинение).

При определении знаков внутренних усилий в вертикальных брусьях необходимо какой-то конец бруса (нижний или верхний) принимать в качестве левого и отмечать его на чертеже каким-либо значком.

Изгибающий момент, продольная сила и поперечная сила, действующие в каждом поперечном сечении, связаны с напряжениями, возникающими в этом сечении, следующими зависимостями [см. формулы (4.1) и рис. 8.1]:

В § 3.1 доказано, что для определения проекции на какую-либо ось внутренних сил в сечении, действующих со стороны левой части бруса на правую, на эту ось надо спроектировать все внешние силы, приложенные к левой части. Аналогично, чтобы определить момент (относительно какой-либо оси) внутренних сил в сечении, действующих со стороны левой части бруса на правую, надо вычислить момент (относительно этой оси) всех внешних сил, приложенных к левой части.

Рис. 2.7

Определение внутренних сил, действующих со стороны левой части бруса на правую, можно производить по внешним силам, приложенным не к левой части, а к правой. В этом случае проекции внешних сил на выбранные оси и их моменты относительно этих осей необходимо взять с обратными знаками. Эти положения позволяют сформулировать следующие правила определения внутренних усилий, возникающих в поперечном сечении бруса, для случаев, когда все внешние силы расположены в одной плоскости.

Изгибающий момент относительно центральной оси z поперечного сечения по величине и знаку равен сумме моментов относительно этой оси всех внешних сил, приложенных к левой части бруса, или сумме моментов (относительно той же оси), взятой с обратным знаком, всех внешних сил, приложенных к правой части:

при этом моменты внешних сил положительны, когда они действуют по часовой стрелке.

Поперечная сила Q по величине и знаку равна сумме проекций всех внешних сил, приложенных к левой части бруса, на нормаль к его продольной оси, проведенную в рассматриваемом поперечном сечении, или сумме проекций (на ту же нормаль), взятой с обратным знаком, веек внешних сил, приложенных к правой части бруса:

при этом проекции внешних сил на нормаль положительны, когда они направлены снизу вверх.

Продольная сила N по величине и знаку равна сумме проекций всех внешних сил, приложенных к левой части бруса, на его продольную ось, или сумме проекций (на ту же ось), взятой с обратным знаком, всех внешних сил, приложенных к правой части бруса:

при этом проекции внешних сил на ось бруса положительны, когда они направлены справа налево.

Отметим, что при определении внутренних усилий моменты и проекции вычисляются от всех внешних сил, приложенных к брусу по одну (и только по одну) сторону от рассматриваемого поперечного сечения (т. е. или слева, или справа от сечения).

С невыполнением этого условия связано большинство ошибок при определении внутренних усилий.

Рис. 3.7

Для примера с помощью изложенных правил найдем внутренние усилия в сечении бруса, находящегося в равновесии, изображенного на рис. 3.7.

По формулам (2.7) -(4.7)

или

или

илди

<< Предыдущий параграф Следующий параграф >>
Оглавление