ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 3.14. УДАР

Рассмотрим какую-либо неподвижно закрепленную упругую систему, на которую с высоты h падает груз Я (рис. 6.14). Пройдя путь , груз Р, движущийся с некоторой скоростью, приходит в соприкосновение с неподвижной системой. Это явление называется ударом. При изучении удара предполагаем, что удар является неупругим, т. е. ударяющее тело не отскакивает от конструкции, а перемещается вместе с ней.

Рис. 6.14

После удара в некоторый момент времени скорость перемещения груза станрвится равной нулю. В этот момент деформация конструкции и напряжения, возникающие в ней, достигают своих наибольших значений. Затем происходят постепенно затухающие колебания системы и груза; в результате устанавливается состояние статического равновесия, при котором деформации конструкции и напряжения в ней равны деформациям и напряжениям, возникающим от статически действующей силы Р.

Система, подвергающаяся удару, может испытывать различные виды деформаций: сжатие (рис. 6.14, а), изгиб (рис. 6.14, б,в), кручение с изгибом (рис. 6.14, г) и др.

Целью расчета сооружения на удар является определение наибольших деформаций и напряжений, возникающих в результате удара.

В курсе сопротивления материалов предполагается, что напряжения, возникающие в системе при ударе, не превышают пределов упругости и пропорциональности материала, а потому при изучении удара можно использовать закон Гука.

В основе приближенной теории удара, рассматриваемой в курсе сопротивления материалов, лежит гипотеза о том, что эпюра перемещений системы от груза Р при ударе (в любой момент времени) подобна эпюре перемещений, возникающих от этого же груза, но действующего статически.

Если, например, эпюра наибольших прогибов балки от удара по ней падающим с высоты h грузом Р (динамических прогибов) имеет вид, показанный на рис. 7.14, а, а эпюра прогибов от статически приложенной силы Р (статических прогибов - вид, изображенный на рис. 7.14, б, то на основании указанной гипотезы

где — динамические прогибы (от удара грузом Р) в сечениях балки соответственно с абсциссой и под грузом; — статические прогибы (от силы Р, действующей статически) в тех же сечениях; - динамический коэффициент.

Рис. 7.14

Из приведенной гипотезы следует, что скорости движения различных точек системы, воспринимающей удар, в каждый момент времени относятся друг к другу как перемещения этих точек от статически действующего груза Р. В тот момент времени, когда скорость движения точки системы в месте удара равна нулю, скорости движения всех остальных ее точек также равны нулю.

Рассмотрим сначала расчет на удар в случаях, когда масса упругого тела, подвергающегося удару, мала и ее при расчете можно принять равной нулю. Для этих случаев приведенная выше гипотеза становится точной, а не приближенной, и потому позволяет получить точное решение задачи.

Обозначим А наибольшее перемещение системы по направлению груза Р (см. рис. 6.14).

Тогда работа груза в результате падения его с высоты h равна . В момент времени, когда деформация системы достигает наибольшей величины, скорости движения груза и системы, а следовательно, и кинетическая энергия их равны нулю. Работа груза к этому моменту равна, таким образом, потенциальной энергии U деформации упругой системы, т. е.

Из сформулированной выше гипотезы следует, что перемещения точек упругой системы, возникающие в результате удара (динами-ческие перемещения), можно получить путем умножения перемещений, возникающих от статического действия силы Р, на динамический коэффициент [см. формулу (7.14)].

Таким образом, перемещение от динамического (ударного) действия нагрузки можно рассматривать как статическое перемещение от силы действующей по направлению силы Р. Тогда потенциальная энергия деформации системы [см. формулы (4.11) и (10.11)]

Здесь - наибольшая сила, с которой груз давит на упругую систему (когда она имеет наибольшую деформацию). Эта сила равна сумме веса груза и силы инерции груза, возникающей в результате торможения его упругой системой.

Подставим выражение V [по формуле (9.14)] в равенство (8.14):

или

Но на основании формулы и, следовательно,

Здесь — перемещение от статически действующей силы Р по ее направлению.

Из условия (10.14)

В формуле (11.14) перед корнем взят знак плюс потому, что прогиб А не может быть отрицательным.

Скорость v падающего груза в момент соприкосновения с системой, подвергающейся удару, связана с высотой падения h соотношением

Поэтому формулу (11.14) можно представить и в таком виде:

На основании формул (7.14), (11.14) и (12.14) получаем следующее выражение динамического коэффициента:

(13.14)

Из принятой гипотезы следует, что динамические напряжения а относятся к величинам статических напряжений как соответствующие перемещения:

откуда

(14.14)

Таким образом, для определения наибольших напряжений и перемещений при ударе напряжения и перемещения, найденные в результате расчета системы на силу Р, действующую статически, следует умножить на динамический коэффициент или рассчитать систему на действие некоторой статической силы, но равной произведению

Рассмотрим теперь случай, когда высота падения груза равна нулю. Такой случай носит название внезапного действия (или мгновенного приложения) нагрузки. Он возможен, например, при раскружаливании железобетонного перекрытия, если стойки, поддерживающие опалубку, убрать мгновенно, выбив их одновременно все. При из формулы (13.14)

(15.14)

Следовательно, при внезапном действии нагрузки деформации системы и напряжения в ней вдвое больше, чем при статическом действии той же. нагрузки. Поэтому в случаях, когда это возможно, следует избегать внезапного приложения нагрузки, например раскружаливание перекрытия производить постепенно, при помощи домкратов, песочниц и т. п.

Если высота h падения груза во много раз больше перемещения то в выражении (13.14) можно пренебречь единицами и принять

Из формул (13.14) и (16.14) видно, что чем большие тем меньше Динамический коэффициент. При статической действии нагрузки напряжения в системе не зависят от модуля упругости материала, а при ударном действии зависят, так как величина обратно пропорциональна модулю, упругости.

Рассмотрим несколько примеров ударного, действия силы Р.

1. В случае продольного удара, вызывающего деформацию сжатия бруса постоянного сечения (см. рис. 6.14, а), АСТ и, следовательно, на основании формулы (13.14) динамический коэффициент

Наибольшие напряжения при таком ударе

Если высота падения h или скорость v велики, то

Из формулы (19.14) следует, что напряжения от удара обратно пропорциональны квадратному корню из объема бруса.

Для уменьшения динамических напряжений следует увеличивать податливость (уменьшать жесткость) системы, например, путем применения пружин, смягчающих удар. Предположим, что на брус, подвергающийся продольному удару, поставлена пружина (рис. 8.14). Тогда [см. формулу (30.6)]

где - диаметр проволоки (прутка) пружины; -средний диаметр пружины; — число витков пружины.

В этом случае динамический коэффициент

Сопоставление формулы (20.14) с выражением (17.14) показывает, что применение пружины приводит к уменьшению динамического коэффициента. При мягкой пружине (например, при большом значении или малом d) динамический коэффициент имеет величину меньшую, чем при жесткой.

Рис. 8.14

Рис. 9.14

2. Сравним прочность двух брусьев, подвергающихся продольному удару (рис. 9.14): одного — постоянного сечения с площадью F, а другого с площадью F на участке длиной и площадью в пределах остальной длины бруса

Для первого бруса

а для второго

Если длина очень мала, например при наличии поперечных выточек, то приближенно можно принять

При статическом действии силы оба бруса равнопрочны, так как наибольшие напряжения (при расчете без учета концентрации напряжений) в каждом из них При ударном же действии нагрузки динамический коэффициент по приближенной формуле (16.14) для первого бруса

а для второго (при малой величине )

т. е. в раз больше, чем для первого бруса. Таким образом, второй брус при ударном действии силы менее прочен, чем первый.

3. В случае изгибающего удара грузом Р, падающим с высоты h на середину балки, свободно лежащей на двух опорах (рис. ),

В этом случае динамический коэффициент [см. формулу (13.14)]

Наибольший изгибающий момент возникает в сечении посередине пролета балки:

Поперечная сила в сечениях балки

Переходя к расчету на удар с учетом массы упругой системы, подвергающейся удару, рассмотрим сначала случай, когда система обладает сосредоточенной массой (где - вес системы), расположенной в месте падения груза Р (рис. 10.14).

При этом будем различать три характерных момента.

1. Момент, непосредственно предшествующий соприкосновению груза Р с упругой системой, когда скорость груза Р равна v, а скорость массы равна нулю.

2. Момент соприкосновения груза Р с системой; при этом скорость с груза Р равна скорости движения упругой системы в месте удара.

3. Момент, когда упругая система получает наибольшее перемещение, а скорости груза Р и упругой системы равны нулю.

Скорость с определяется из условия, что при неупругом ударе количество движения до удара равно количеству движения после удара (см. курс теоретической механики), т. е.

откуда

(21.14)

Система под действием собственного веса Q еще до удара деформируется. Если — прогиб системы под силой Q, вызванный этой силой, то количество потенциальной энергии, накопленное системой до удара,

Рис. 10.14

Обозначим А — наибольшее перемещение в месте падения груза Р, вызванное его ударным действием и силой

В момент времени, когда система получает такое перемещение, грузы Р и Q оказывают на систему наибольшее давление, равное где -динамический коэффициент, учитывающий вес груза Р, инерцию этого груза и инерцию груза Q. Рассматриваемому моменту времени соответствует наибольшее значение потенциальной энергии системы (кинетическая энергия в этот момент равна нулю, так как равны нулю скорости движения грузов Р и ):

(22.14)

где — потенциальная энергия системы до удара: кинетическая энергия груза и системы в момент их соприкосновения; — работа сил Р и Q на дополнительном перемещении (см. рис. 10.14) системы после удара.

Потенциальную энергию можно выразить также через силу и полное перемещение А [см. формулы (4.11) и (10.11]:

(23.14)

Приравняем друг другу выражения (22.14) и (23.14) и выразим в первом из них значение с через v [см. формулу (21.14)]. Тогда после некоторых преобразований

(24.14)

Обозначим прогиб системы под грузом Р от статического действия этого груза. Зависимость между перемещениями (от силы Q) и (от силы ) определяется формулами

откуда

(25.14)

Подставим эти выражения перемещений в уравнение (24.14) и преобразуем его:

откуда

Частицы системы, соприкасающиеся с грузом Р, после удара получают ту же скорость, что и груз остальные частицы после удара движутся с различными скоростями зависящими от положения частиц.

Для определения вызванных ударом наибольших динамических напряжений и перемещений с учетом массы упругой системы, так же как и при расчете без учета массы, напряжения и перемещения, найденные путем расчета системы на статическое действие силы Р, следует умножить на динамический коэффициент Прибавив к найденным значениям напряжения и деформации от собственного веса упругой системы (если по условию задачи их следует учитывать), получим полные напряжения и перемещения, возникающие при ударе.

Рассмотрим теперь удар по упругой системе с распределенной по ее длине массой.

Кинетическая энергия движения системы непосредственно после удара

(27.14)

где — кинетическая энергия элементарной частицы системы весом (массой ), движущейся в первый момент после удара со скоростью

Упругую систему с распределенной массой (в сумме, равной где - вес системы) удобно мысленно заменять системой, обладающей такими же упругими свойствами, но с приведенной массой сосредоточенной в точке удара. Величина сосредоточенной массы принимается такой, чтобы ее кинетическая энергия была равна [см. выражение (27.14)]. Из этого условия

откуда

На основании гипотезы, приведенной выше,

здесь -перемещение элементарной частицы системы от статического действия силы Дст — перемещение частицы, соприкасающейся при ударе с грузом, от статического действия силы Р. Окончательно

Выражение динамического коэффициента для рассматриваемого случая можно получить путем подстановки в формулу (26.14) значения PQ вместо

Сравнивая выражения (29.14) и (13.14), устанавливаем, что при учете массы упругой системы, подвергающейся удару, под знак корня дополнительно вводится множитель . В остальном расчет проводится так же, как и без учета массы системы.

Рассмотрим вычисление коэффициента для некоторых частных случаев.

1. Продольный удар, вызывающий деформацию сжатия (илирастяжения) бруса постоянного сечения(рис. 11.14, а).

Перемещение сечення от статически действующей силы Р (рис. ) равно а перемещение верхнего сечения бруса равно . Вес элемента при площади сечения F равен , где - объемный вес материала бруса.

Вычисляем коэффициент по формуле (28.14):

(30.14)

Изгибающий удар по середине балки, лежащей на двух опорах (рис. 12.14, а).

Рис. 11.14

Рис. 12.14

Перемещение сечения от статически действующей силы Р (рис. 12.14, б)

а перемещение сечення под грузом равно Следовательно,

Вес элемента равен

Подставляем найденные выражения в формулу (28.14):

После выполнения интегрирования получим

(31-14)

<< Предыдущий параграф Следующий параграф >>
Оглавление