Макеты страниц
§ 4.9. ИЗГИБ С КРУЧЕНИЕМ БРУСЬЕВ КРУГЛОГО СЕЧЕНИЯСочетание изгиба и кручения брусьев круглого поперечного сечения наиболее часто рассматривается при расчете валов. Значительно реже встречаются случаи изгиба с кручением брусьев некруглого сечения. В § 1.9 установлено, что в случае, когда моменты инерции сечения относительно главных осей равны между собой, косой изгиб бруса невозможен. В связи с этим невозможен косой изгиб брусьев круглого сечения. Поэтому в общем случае действия внешних сил брус круглого сечения испытывает сочетание следующих видов деформации: прямого поперечного изгиба, кручения и центрального растяжения (или сжатия). Рассмотрим такой частный случай расчета бруса круглого сечения, когда в его поперечных сечениях продольная сила равна нулю. В этом случае брус работает на совместное действие изгиба и кручения. Для отыскания опасной точки бруса необходимо установить, как изменяются по длине бруса величины изгибающих и крутящих моментов, т. е. построить эпюры полных изгибающих моментов М и крутящих моментов Построение этих эпюр рассмотрим на конкретном примере вала, изображенного на рис. 22.9, а. Вал опирается на подшипники А и В и приводится во вращение двигателем С. На вал насажены шкивы Е и F, через которые перекинуты приводные ремни, имеющие натяжения . Предположим, что вал вращается в подшипниках без трения; собственным весом вала и шкивов пренебрегаем (в случае, когда их собственный вес значителен, его следует учесть). Направим ось у поперечного сечения вала вертикально, а ось - горизонтально. Величины сил можно определить с помощью формул (1.6) и (2.6), если, например, известны мощность, передаваемая каждым шкивом, угловая скорость вала и соотношения После определения величин сил эти силы переносят параллельно самим себе к продольной оси вала. При этом к валу в сечениях, в которых расположены шкивы Е и F, прикладываются скручивающие моменты и равные соответственно Эти моменты уравновешиваются моментом передаваемым от двигателя (рис. 22.9, б). Затем силы раскладывают на вертикальные и горизонтальные составляющие. Вертикальные силы вызовут в подшипниках вертикальные реакции а горизонтальные силы — горизонтальные реакции Величины этих реакций определяются, как для балки, лежащей на двух опорах. Эпюра изгибающих моментов действующих в вертикальной плоскости, строится от вертикальных сил (рис. 22.9, в). Она показана на рис. 22.9, г. Аналогично от горизонтальных сил (рис. 22.9, д) строится эпюра изгибающих моментов действующих в горизонтальной плоскости (рис. 22.9, е). По эпюрам можно определить (в любом поперечном сечении) полный изгибающий момент М по формуле По значениям М, полученным с помощью этой формулы, строится эпюра полных изгибающих моментов (рис. 22.9, ж). На тех участках вала, на которых прямые, ограничивающие эпюры пересекают оси эпюр в точках, расположенных на одной вертикали, эпюра М ограничена прямыми, а на остальных участках она ограничена кривыми. (см. скан) Рис. 22.9 Например, на участке рассматриваемого вала длиной эпюра М ограничена прямой (рис. 22.9, ж), так как эпюры на этом участке ограничены прямыми и , пересекающими оси эпюр в точках расположенных на одной вертикали. На той же вертикали расположена и точка О пересечения прямой с осью эпюры. Аналогичное положение характерно и для участка вала длиной Эпюра полных (суммарных) изгибающих моментов М характеризует величину этих моментов в каждом сечении вала. Плоскости действия этих моментов в различных сечениях вала различны, но ординаты эпюры условно для всех сечений совмещены с плоскостью чертежа. Эпюра крутящих моментов строится так же, как и при чистом кручении (см. § 1.6). Для рассматриваемого вала она показана на рис. 22.9, з. Рис. 23.9 Опасное сечение вала устанавливается с помощью эпюр полных изгибающих моментов М и крутящих моментов Если в сечении бруса постоянного диаметра с наибольшим изгибающим моментом М действует и наибольший крутящий момент то это сечение является опасным. В частности, у рассматриваемого вала таким является сечение, расположенное правее шкива F на бесконечно малом расстоянии от него. Если же наибольший изгибающий момент М и наибольший крутящий момент действуют в разных поперечных сечениях, то опасным может оказаться сечение, в котором ни величина ни не является наибольшей. При брусьях переменного диаметра наиболее опасным может оказаться сечение, в котором действуют значительно меньшие изгибающие и крутящие моменты, чем в других сечениях. В случаях, когда опасное сечение нельзя установить непосредственно по эпюрам М и приходится проверять прочность бруса в нескольких его сечениях и таким путем устанавливать опасные напряжения. После того как установлено опасное сечение бруса (или намечено несколько сечений, одно из которых может оказаться опасным), необходимо найти в нем опасные точки. Для этого рассмотрим напряжения, возникающие в поперечном сечении бруса, когда в нем одновременно действуют изгибающий момент М и крутящий момент В брусьях круглого сечения, длина которых во много раз больше диаметра, величины наибольших касательных напряжений от поперечной силы невелики и при расчете прочности брусьев на совместное действие изгиба и кручения не учитываются. На рис. 23.9 показано поперечное сечение круглого бруса. В этом сечении действуют изгибающий момент М и крутящий момент За ось у принята ось, перпендикулярная плоскости действия изгибающего момента ось у является, таким образом, нейтральной осью сечения. В поперечном сечении бруса возникают нормальные напряжения о от изгиба и касательные напряжения от кручения. Нормальные напряжения а определяются по формуле Эпюра этих напряжений показана на рис. 23.9. Наибольшие по абсолютной величине нормальные напряжения возникают в точках А и В. Эти напряжения равны где - осевой момент сопротивления поперечного сечения бруса. Касательные напряжения определяются по формуле Эпюра этих напряжений показана на рис. 23.9. Рис. 24.9 В каждой точке сечения они направлены по нормали к радиусу, соединяющему эту точку с центром сечения. Наибольшие касательные напряжения возникают в точках, расположенных по периметру сечения; они равны где полярный момент сопротивления поперечного сечения бруса. При пластичном материале точки А и В поперечного сечения, в которых одновременно и нормальные и касательные напряжения достигают наибольшего значения, являются опасными. При хрупком материале опасной является та из этих точек, в которой от изгибающего момента М возникают растягивающие напряжения. Напряженное состояние элементарного параллелепипеда, выделенного в окрестности точки А, изображено на рис. 24.9, а. По граням параллелепипеда, совпадающим с поперечными сечениями бруса, действуют нормальные напряжения и касательные . На основании закона парности касательных напряжений напряжения возникают также на верхней и нижней гранях параллелепипеда. Остальные две грани его свободны от напряжений. Таким образом, в данном случае имеется частный вид плоского напряженного состояния, подробно рассмотренного в гл. 3. Главные напряжения атах и определяются по формулам (12.3). После подстановки в них значения получаем Напряжения имеют разные знаки и, следовательно, Элементарный параллелепипед, выделенный в окрестности точки А главными площадками, показан на рис. 24.9, б. Расчет брусьев на прочность при изгибе с кручением, как уже отмечалось (см. начало § 1.9), производится с применением теорий прочности. При этом расчет брусьев из пластичных материалов выполняется обычно на основе третьей или четвертой теории прочности, а из хрупких — по теории Мора. По третьей теории прочности [см. формулу (6.8)], подставив в это неравенство выражения [см. формулы (23.9)], получим Для опасной точки сечения подставляем в (24.9) значения и по формулам (21.9) и (22.9): Величину называют приведенным (или эквивалентным) моментом по третьей теории прочности. Вводя обозначение окончательно получаем условие прочности Расчетные формулы по другим теориям прочности также приводятся к аналогичному виду. По четвертой теории прочности [см. формулу (8.8)], Подставляя значение главных напряжений по формулам (23.9), после некоторых преобразований получаем Учитывая (21.9) и (22.9), имеем условие прочности или где - приведенный момент по четвертой теории прочности. По теории прочности Мора [см. формулу (9.8)], Подставляя значения по формулам (23.9), после несложных преобразований получаем Учитывая (21.9) и (22.9), имеем или (30.9) где Мприв — приведенный момент по теории прочности Мора. Таким образом, расчет бруса круглого поперечного сечения на совместное действие изгиба и кручения по форме совпадает с расчетом на прямой изгиб, но в расчетную формулу вместо изгибающего момента входит приведенный момент, величина которого зависит от изгибающих и крутящего моментов, а также от принятой теории прочности.
|
Оглавление
|