ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 6.7. ПРИМЕРЫ ПОСТРОЕНИЯ ЭПЮР ВНУТРЕННИХ УСИЛИЙ

Эпюры внутренних усилий имеют важное значение для расчета конструкций. Поэтому рассмотрим ряд примеров построения эпюр с использованием различных приемов. На основе этих примеров сделаем некоторые общие выводы.

Построим эпюры Q и М для балки, заделанной левым концом, нагруженной на правом конце моментом (рис. 18.7, а).

По формулам (3.7) и (2.7)

В рассматриваемом случае поперечная сила равна нулю (т. е. балка находится в состоянии чистого изгиба), а изгибающий момент имеет постоянное значение.

Рис. 18.7

Рис. 19.7

По полученным выражениям Q и М на рис. 18.7, б, в построены соответствующие эпюры. Построим эпюры Q и М для балки, заделанной левым концом, нагруженной на правом конце силой Р (рис. 19.7, а).

По формулам (3.7) и (2.7)

Эпюры Q и М показаны на рис. 19.7, б, в.

Построим эпюры Q и М для балки, заделанной правым концом, нагруженной равномерно распределенной нагрузкой q (рис. 20.7, а).

В сечениях участка балки поперечные силы и изгибающие моменты равны нулю, так как слева от любого такого сечения нет действующих на балку внешних сил:

Для участка II по формулам (3.7) и (2.7)

где — расстояние от рассматриваемого сечения до начала участка II (до начала действия нагрузки ).

Эпюры Q и М, построенные по полученным выражениям, изображены на рис. 20.7, б, в.

На границе участков поперечная сила равна нулю, а потому (см. § 5.7, вывод 7) касательная к линии, ограничивающей эпюру М, параллельна оси эпюры (в данном случае совпадает с осью эпюры).

Опорные реакции в заделке можно определить по эпюрам Q и М. Они равны соответствующим ординатам эпюр в опорном сечении балки. Эти реакции показаны на рис. 20.7, г приложенными к заданной балке, освобожденной от заделки.

Рис. 20.7

Рис. 21.7

Построим эпюры Q и М для простой балки, нагруженной в пролете одной вертикальной силой Р (рис. 21.7, а).

Из уравнения равновесия в виде суммы моментов всех сил относительно точки В (рис. 21.7,б)

находим

Из уравнения

получим

Рассматриваемая балка имеет два участка (рис. 21.7, б).

Составим выражения для поперечной силы Q и изгибающего момента М. По формулам (3.7) и (2.7) получим:

участок

участок II

В данном случае значения проще определить через правые силы:

Значения поперечных сил в пределах каждого участка постоянны. Эпюра Q, построенная по полученным выражениям, показана на рис. 21.7, в.

Значения изгибающих моментов линейно зависят от величины Поэтому для построения эпюры М достаточно знать две ее ординаты на каждом участке:

Значения изгибающих моментов на концах балки (при ) можно не определять. Эти моменты равны нулю, потому что концы балки опираются на шарнирные опоры, не воспринимающие изгибающих моментов. Изгибающий момент в сечении у конца балки может отличаться от нуля лишь тогда, когда оно заделано или когда к балке в этом сечении приложен внешний сосредоточенный момент.

Эпюра М, построенная по полученным значениям ординат, показана на рис. 21.7, г.

Наибольший изгибающий момент возникает в сечении под силой Р. В случае, когда сила Р приложена по середине балки (т. е. при ), наибольший момент

Из рис. 21.7 следует, что на участках балки, на которых к ней не приложена распределенная нагрузка, перпендикулярная к ее оси, значения Q постоянны, а значения М изменяются по линейному закону.

Эпюра Q в сечении, в котором к балке приложена сила Р, имеет скачок, равный Р (см. рис. 21.7, в). Следовательно, линия, ограничивающая эпюру М, в этом сечении должна иметь перелом (см. вывод 6, § 5.7); Аналогичные скачки в эпюре Q и переломы в эпюре М имеются и у опор балки, так как опорные реакции представляют собой для балки внешние сосредоточенные силы.

Построим эпюры Q и М для простой балки, нагруженной в пролете внешним моментом ЗЯ (рис. 22.7, а). Из уравнения момента всех сил относительно шарнира В (рис. 22.7, б)

находим

Из уравнения

имеем

Полученное отрицательное значение реакции указывает на то, что в действительности она направлена не вверх, как это принято, а вниз. Оставляем реакцию RA направленной вверх, но значение ее считаем отрицательным, хотя можно направить ее вниз и считать положительной.

Рассматриваемая балка имеет два участка. Составляем для них выражения Q и М [с помощью формул (3.7) и (2.7)]: участок )

Рис. 22.7

участок II

Из выражений видно, что поперечная сила во всех сечениях балки равна Определяем значения изгибающих моментов: при

Эпюры, построенные по полученным значениям Q и М, изображены на рис. 22.7, в, г.

Рис. 23.7

Прямые, ограничивающие эпюру М на обоих участках, параллельны друг другу. Это связано с тем, что поперечные силы на обоих участках одинаковы. Эпюра М в сечении, в котором к балке приложен внешний момент, имеет скачок, равный величине этого момента.

Построим эпюры для простой балки, нагруженной по всей длине равномерно распределенной нагрузкой q (рис. 23.7, а).

Опорные реакции RA и RB (рис. 23.7, б), очевидно, равны друг другу, так как балка симметрична относительно своей середины.

Из уравнения равновесия в виде суммы проекций всех сил на вертикальную ось

при получаем

Составим выражения для поперечной силы Q и изгибающего момента М в сечении балки с абсциссой

По формулам (3.7) и (2.7)

Нетрудно убедиться в том, что эти выражения удовлетворяют теореме Журавского (6.7):

Поперечная сила в рассматриваемом примере изменяется по линейному закону. Следовательно, для построения эпюры Q достаточно определить два ее значения:

Построенная по этим значениям эпюра Q изображена на рис. 23.7, в.

Изгибающий момент в рассматриваемом примере изменяется по закону квадратной параболы. Для построения эпюры М определяем значения момента для сечений балки с интервалом между ними, равным

Построенная по этим значениям эпюра М изображена на рис. 23.7,г.

Построенные эпюры Q и М находятся в полном соответствии с выводами, приведенными в § 5.7. Из эпюр, например, следует, что при равномерно распределенной нагрузке q поперечная сила изменяется по длине балки по закону прямой, а изгибающий момент по закону кривой (по квадратной параболе). На левой половине балки, где поперечная сила положительна, изгибающий момент возрастает (см. рис. 23.7, в, г), а на правой (где поперечная сила отрицательна) он убывает; это находится в соответствии с выводом 2, изложенным в § 5.7.

В сечении с абсциссой изгибающий момент достигает максимума, а поперечная сила равна нулю (вывод 7, § 5.7).

Из формул (5.7) и (6.7) можно получить следующую зависимость:

Известно, что если вторая производная положительна, то кривая, выражающая зависимость обращена выпуклостью вниз.

Следовательно, при распределенной нагрузке, направленной вверх (т. е. положительной), эпюра М обращена выпуклостью вниз, а при распределенной нагрузке, направленной вниз, эпюра М обращена выпуклостью вверх. В рассматриваемом случае нагрузка q направлена вниз, а потому эпюра М обращена выпуклостью вверх (см. рис. 23.7, г).

На основании теоремы Журавского [формула (6.7)]

и, следовательно,

откуда

или

Здесь индексы при М указывают на абсциссы тех сечений, в которых действуют моменты — величина площади эпюры поперечных сил на участке балки от до Плошадь эпюры определяется по значениям поперечных сил Q и расстояний

Таким образом изменение величины изгибающего момента на участке балки от до равно площади эпюры поперечных сил на этом участке.

Формулы (8.7) и (9.7) применимы при условии, что на участке между к балке не приложены внешние моменты.

Определим с помощью формулы (8.7) изгибающий момент в среднем сечении (т. е. при ) рассматриваемой балки (рис. 23.7):

но так как

Определим теперь с помощью формулы (8.7) изгибающий момент в сечении с абсциссой (рис. 23.7, г):

где - площадь трапеции 1-2-3-4 на эпюре Q (рис. 23.7,в).

Так как , то

где из подобия треугольников 1-4-5 и 2-3-5 (рис. 23.7, в)

Следовательно,

Это выражение совпадает с выражением М, полученным выше.

Дифференциальная зависимость между Q и q, выражаемая формулой (5.7), аналогична зависимости между М и Q по формуле (6.7). Поэтому между эпюрами Q и q существует такая же зависимость, как и между эпюрами М и

Следовательно, изменение величины поперечной силы на участке балки от до равно площади эпюры распределенной нагрузки q на этом участке:

Эта формула справедлива при условии, что в пределах рассматриваемого участка к балке не приложены сосредоточенные силы.

На основании проделанных примеров можно установить следующий порядок построения эпюр Q и М:

1. Составляется расчетная схема балки (в виде оси) с изображением действующих на нее нагрузок.

2. Отбрасываются опоры, а их влияние на балку заменяется соответствующими реакциями; указываются обозначения реакций и принятые их направления.

3. Составляются уравнения равновесия балки, решением которых определяются значения опорных реакций,

4. Балка разбивается на участки, границами которых являются точки приложения внешних сосредоточенных сил и моментов, а также точки начала и окончания действия или изменения характера распределенных нагрузок.

5. Составляются выражения изгибающих моментов М и поперечных сил Q для каждого участка балки.

На расчетной схеме указывается начало и направление отсчета расстояний х для каждого участка.

6. По полученным выражениям вычисляются ординаты эпюр для ряда сечений балки в количестве, достаточном для изображения этих эпюр.

7. Определяются сечения, в которых поперечные силы равны нулю и в которых, следовательно, действуют моменты Мтах или вычисляются значения этих моментов.

8. По полученным значениям ординат строятся эпюры.

9. Производится проверка построенных эпюр путем сопостав ления их друг с другом.

В ряде случаев отдельные этапы построения эпюр из приведенных выше можно не выполнять. Например, можно не изображать балку без опор, а обозначения и направления опорных реакций указывать на расчетной схеме балки; при расчете балок, заделанных одним концом, нет необходимости определять опорные реакции и т. д.

Эпюры Q и М можно строить, не составляя выражений для Q и а ограничиваясь вычислением значений поперечных сил и изгибающих моментов в характерных сечениях балки и используя выводы из дифференциальных зависимостей (5.7) и приведенные в § 5.7.

Для иллюстрации такого приема построения эпюр Q и М рассмотрим балку на двух опорах, изображенную на рис. 24.7, а.

Из уравнений равновесия

получаем

Найденные значения опорных реакций указаны на рис. 24.7, а.

Строим эпюру Q (рис. 24.7,б), рассуждая Следующим образом. На участках III и IV эпюра Q ограничена прямыми, параллельными оси абсцисс, так как на этих участках отсутствует распределенная нагрузка. На участке поперечная сила постоянна и равна так как слева от любого сечения этого участка действует только направленная вниз сила . На границе участков поперечная сила скачкообразно возрастает на так как в сечении на этой границе приложена направленная вверх сосредоточенная сила На границе участков II и III поперечная сила также скачкообразно уменьшается на так как в сечении на этой границе приложена направленная вниз сосредоточенная сила На участках III и IV поперечные силы одинаковы, так как проекция пары сил (момента ), приложенной на границе этих участков, на любую ось равна нулю. На участке V поперечная сила уменьшается от левого конца участка (где она равна ) к правому по закону прямой, так как интенсивность q распределенной нагрузки постоянна. На правом конце балки (в конце участка V) поперечная сила равна опорной реакции RB, взятой с обратным знаком, т. е. равна — это непосредственно следует из выражения (3.7).

При построении эпюры М (рис. 24.7, в) будем рассуждать следующим образом.

На участках I, II, III и IV эпюра М ограничена прямыми, так как в пределах каждого из них поперечная сила постоянна; поэтому для построения эпюры вычисляем значения М в начале и конце каждого из этих участков:

Рис. 24.7

в начале участка I (на левом конце балки)

в конце участка I и в начале участка II

в конце участка II и в начале участка III

в конце участка III

в начале участка IV

в конце участка IV

Заметим, что значения М в конце участка III и в начале участка IV отличаются на что соответствует величине внешнего момента, приложенного к балке на границе этих участков.

На участке V эпюра М ограничена кривой (квадратной параболой); прямая, ограничивающая эпюру М на участке IV, является касательной к этой кривой в точке а (на границе участков IV и V), так как величины поперечных сил в конце участка IV и в начале участка V одинаковы (рис. 24.7, б). На правом конце балки (в конце участка V) изгибающий момент равен нулю.

Из эпюры Q следует, что поперечная сила на участке V равна нулю в сечении, отстоящем на расстоянии от начала этого участка. В этом сечении изгибающий момент имеет максимальное значение:

При построении кривой, ограничивающей эпюру М на участке V, следует иметь в виду, что она на границе участков IV и V (в точке а) имеет общую касательную (сливающуюся с прямой для участка IV), в точке b имеет максимум и проходит через точку с на правой опоре (рис. 24.7, в).

Эпюру М можно построить и другим способом, а именно по площадям эпюры Q, используя уже построенную эпюру Q и зависимость (9.7). Покажем применение этого способа для балки, изображенной на рис. 24.7. В начале участка балки (на левом ее конце) . В пределах участка I изгибающий момент изменяется на величину площади эпюры Q на этом участке [в соответствии с выражением (9.7)], т. е. на и, следовательно, на границе участков

В пределах участка II площадь эпюры Q равна:

и, следовательно, в конце участка II

В пределах участка III площадь эпюры Q равна:

а потому в конце участка III

В сечении на границе участков 111 и IV приложен сосредоточенный момент а потому в этом сечении изгибающий момент скачкообразно возрастает на и становится равным (в начале участка IV)

В пределах участка IV изгибающий момент увеличивается на площадь эпюры Q на этом участке, равную

и в конце участка IV принимает значение

В пределах всего участка V площадь эпюры Q равна:

и, следовательно, в конце участка V изгибающий момент

Такой результат получается потому, что правый конец балки опирается на шарнирную опору и к нему не приложен сосредоточенный момент.

Значение в сечении участка V, отстоящем на расстоянии 0,6 м от начала этого участка, можно найти, прибавив к моменту (на границе участков IV и V) площадь эпюры Q, равную

Тогда

Способ построения эпюры М по площадям эпюры Q позволяет легко проверять эпюры М, полученные другими способами.

Рассмотрим теперь действие нагрузок и q на балку, заделанную правым концом (рис. 25.7, а). Эпюры Q и М от каждой из этих нагрузок уже построены (см. рис. 18.7-20.7).

На основании принципа независимости действия сил (см. § 6.1) эпюры внутренних усилий от одновременного действия нагрузок Р,

и q можно получить путем суммирования эпюр, построенных от каждой из них. В соответствии с этим на рис. 25.7, б, в, г показаны эпюры Q от раздельного действия каждой нагрузки. Путем суммирования этих эпюр получена эпюра Q от всей заданной нагрузки, показанная на рис. 25.7, д. Аналогично на рис. 25.7, и изображена эпюра М от всей заданной нагрузки, полученная путем суммирования эпюр М от раздельного действия нагрузок (рис. 25.7, е, ж, з).

(см. скан)

Рис. 25.7

(см. скан)

Рис. 26.7

В некоторых случаях для построения эпюры от заданной нагрузки приходится суммировать эпюры разных знаков и более сложного вида. В таких случаях производится суммирование ординат этих эпюр для ряда сечений балки, а затем по полученным значениям суммарных ординат строится эпюра.

Любой участок некоторой длины а, выделенный из балки, при построении эпюр Q и М можно рассматривать как простую балку с пролетом а, лежащую на двух опорах. Для примера выделим среднюю треть из балки, показанной на рис. 25.7, а. На выделенный участок длиной (рис. 26.7, а) действуют распределенная нагрузка q, а также сосредоточенные силы и моменты, заменяющие воздействие соседних участков балки. Эти силы и моменты равны внутренним усилиям в поперечных сечениях балки, совпадающих с границами выделенного участка. Величины их указаны на эпюрах Q и М, построенных для всей балки (рис. 25.7, д, и).

Выделенный участок балки находится в равновесии. Эпюры Q и М, построенные для выделенного участка балки, показаны на рис. 26.7, б, в. Они полностью совпадают с соответствующими участками эпюр Q и М, изображенных на рис. 25.7, д, и для всей балки.

Выделенный из балки участок (рис. 26.7, а) можно рассматривать как простую балку пролетом загруженную по концам сосредоточенными моментами и а в пролете — равномерно распределенной нагрузкой q (рис. 26.7, г).

Если из условий равновесия этой балки определить реакции ее опор то они окажутся равными соответственно , т. е. поперечным силам, которые действуют в торцовых сечениях выделенного участка (см. рис. 26.7, а). Очевидно, что эпюры Q и М, построенные для простой балки (рис. 26.7, г), совпадут с эпюрами для выделенного участка, показанными на рис. 26.7, б, в.

Эпюру М для простой балки пролетом нагруженной, как показано на рис. 26.7, г, можно, на основании принципа независимости действия сил, рассматривать как сумму двух эпюр: 1) эпюры М от моментов приложенных по концам балки (рис. 26.7, 3), имеющей форму трапеции (рис. 26.7, е); 2) эпюры М от равномерно распределенной нагрузки q (рис. 26.7, ж), имеющей форму выпуклой квадратной параболы с наибольшей ординатой посредине пролета, равной (рис. 26.7, э), и площадью

Из рассмотренного примера можно сделать следующий вывод. Эпюру изгибающих моментов на любом участке балки, на котором к ней приложена только равномерно распределенная нагрузка q, можно рассматривать как сумму двух эпюр: 1) эпюры, имеющей вид трапеции, и 2) эпюры, имеющей вид выпуклой квадратной параболы с максимальной ординатой посредине участка, равной (где с — длина участка), и площадью

Примеры такого расчленения эпюр на две составляющие эпюры показаны на рис. 27.7.

Построим теперь эпюры М, Q и N для ломаного бруса, изображенного на рис. 28.7, а.

Рис. 27.7

Условимся нижний конец вертикального элемента бруса считать левым концом; в соответствии с этим на рис. 28.7, а отметим нижний конец вертикального элемента крестиком.

Рис. 28.7

Брус имеет два участка. Для каждого из них составляем уравнения изгибающих моментов, продольных и поперечных сил.

Участок

По формулам (2.7) — (4.7) определяем внутренние усилия в сечении вертикального элемента АВ, отстоящем на расстоянии от верхнего его конца:

Участок

По тем же формулам (2.7)-(4.7) определяем внутренние усилия в сечении горизонтального элемента отстоящем на расстоянии от левого его конца:

Построенные по полученным данным эпюры М, Q и N изображены на рис. 28.7, б, в, г.

Отметим, что полученные выражения не удовлетворяют теореме Журавского [формуле (6.7)]. Действительно,

а по теореме Журавского

Такое положение является результатом того, что для участка бруса положительным для оси принято направление справа налево, в то время как при выводе формулы (6.7) положительным принято направление слева направо.

Проверим равновесие узла В бруса. Для этого выделим его из бруса и приложим к нему внутренние усилия, возникающие в поперечных сечениях, бесконечно близких к узлу В (рис. 28.7, д).

Составим уравнение равновесия узла В:

Здесь МВА — изгибающий момент в сечении В элемента В А; N— продольная сила в сечении В элемента ВС и т. д.

Таким образом, условия равновесия удовлетворяются. На рис. 25.7, д направления сил и моментов увязаны с эпюрами М, Q и N (рис. 28.7, б, в, г) и правилом знаков для внутренних усилий. Так, например, из эпюры Q (рис. 28.7, в) видно, что поперечная сила QBA отрицательна; в соответствии с этим ей на рис. 28.7, д дано такое направление, при котором она стремится вращать узел В против часовой стрелки.

Условия равновесия должны удовлетворяться при любом числе стержней, сходящихся в рассматриваемом узле. Если к узлу приложены внешние сосредоточенные силы и моменты, то их также следует учитывать при рассмотрении равновесия узла.

С помощью формул (5.7) — (10.7) не только может проверяться соответствие между действующей на балку нагрузкой, эпюрой Q и эпюрой М. Эти формулы позволяют также по эпюре М построить эпюру Q и определить действующую на балку нагрузку. Покажем это на следующем примере. На рис. 29.7, а изображена эпюра М, состоящая из четырех участков. На участке длиной эпюра очерчена по параболе второго порядка а на участке II — по прямой (касательной к параболе в точке С).

В начальном сечении А касательная к эпюре М совпадает с осью эпюры, т. е.

Следовательно, на основании (7.7) в этом сечении

На участке II величина изменяется по линейному закону и, следовательно,

По формуле (7.7)

На границе участков эпюра Q не имеет скачка, так как в точке С линии, ограничивающие эпюру М, сопрягаются без перелома (рис. 29.7, а).

Рис. 29.7

Таким образом, ординаты эпюр Q в начале и конце участка I уже известны. Соединяем вершины этих ординат прямой, так как на протяжении этого участка поперечная сила изменяется по прямой На участке II эпюра Q имеет вид прямоугольника с ординатами, равными (рис. 29.7, б).

На участке III и IV величины изменяются по линейному закону; следовательно, . На основании формулы (7.7)

Поперечные силы отрицательны, так как отрицательны углы

По этим значениям строим эпюру Q на участках III и IV (рис. 29.7, б).

Переходим к определению действующей на балку нагрузки.

На участках и II эпюры М и Q не имеют скачков. Следовательно, на этих участках к балке не приложены сосредоточенные силы и моменты. На первом участке величины Q изменяются по линейному закону и, следовательно, По формуле (10.7)

откуда

В пределах участков II, III и IV ординаты эпюр Q постоянны; поэтому здесь нет распределенной нагрузки. При переходе от участка II к III имеется скачок в эпюре Q, равный Следовательно, в этом сечении к балке приложена вертикальная сосредоточенная сила направленная вниз.

На границе участков III и IV имеется скачок в эпюре М, равный Это означает, что в данном сечении к балке приложен внешний сосредоточенный момент

На правом конце балки (в сечении В) поперечная сила имеет скачок от до нуля, т. е. скачок, равный а изгибающий момент имеет скачок, равный Следовательно, на правом конце балки к ней приложены сосредоточенная сила и сосредоточенный момент Действующая на балку нагрузка показана на рис. 29.7, в.

<< Предыдущий параграф Следующий параграф >>
Оглавление