ЕГЭ и ОГЭ
Живые анекдоты
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 2.3. ПЛОСКОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ

При плоском напряженном состоянии в одной из площадок, проходящих через рассматриваемую точку, касательные и нормальные напряжения равны нулю. Совместим эту площадку с плоскостью чертежа и выделим из тела в окрестности этой точки бесконечно малую (элементарную) треугольную призму, боковые грани которой перпендикулярны к плоскости чертежа, а высота (в направлении, перпендикулярном к плоскости чертежа) равна основания призмы представляют собой прямоугольные треугольники (рис. 2.3, а).

Приложим к выделенной призме те же напряжения, которые действовали на нее до выделения ее из тела. В связи с тем, что все размеры выделенной призмы бесконечно малы, касательные и нормальные напряжения по ее боковым граням можно считать распределенными равномерно и равными напряжениям в площадках, проходящих параллельно ее граням.

Выберем систему координат, совместив оси и у (в плоскости чертежа) с гранями призмы (рис. 2.3, а). Обозначим напряжения, параллельные оси и — оси у.

Нормальные напряжения по боковой грани призмы, наклоненной под углом а к грани, по которой действуют напряжения обозначим <эта, а касательные напряжения по этой грани та. По основаниям призмы, параллельным плоскости чертежа, касательные и нормальные напряжения при плоском напряженном состоянии равны нулю.

Примем следующее правило знаков. Растягивающее нормальное напряжение положительно, а сжимающее — отрицательно. Касательное напряжение по боковой грани призмы положительно, если изображающий его вектор стремится вращать призму по часовой стрелке относительно любой точки, лежащей на внутренней нормали к этой грани. Угол а положителен, если грань призмы (по которой действует напряжение ) для совмещения с гранью (по которой действует напряжение ) поворачивается на этот угол против часовой стрелки. На рис. 2.3, а все напряжения, а также угол а положительны.

Рис. 2.3

Умножив каждое из напряжений на площадь грани, по которой оно действует, получим систему сосредоточенных сил Ту и Та, приложенных в центрах тяжести соответствующих граней (рис. 2.3, б):

Эти силы должны удовлетворять всем уравнениям равновесия, так как призма, выделенная из тела, находится в равновесии.

Составим следующие уравнения равновесия:

В уравнение (4.3) силы не входят, так как линии их действия проходят через точку (начало системы координат ).

Подставив в уравнение (4.3) выражения и Ту из равенств (1.3), получим

откуда

Следовательно, касательные напряжения по двум взаимно перпендикулярным площадкам равны по абсолютной величине и обратны по знаку. Эта связь между называется законом парности касательных напряжений.

Из закона парности касательных напряжений следует, что в двух взаимно перпендикулярных площадках касательные напряжения направлены либо к линии пересечения этих площадок (рис. 3.3, а), либо от нее (рис. 3.3, б).

Рис. 3.3

Подставим в уравнения (2.3) и (3.3) выражения сил из равенств (1.3):

Сократим эти уравнения на , учитывая при этом, что (см. рис. 2.3, а):

Теперь заменим на [см. формулу (5.3)]:

Формулы (6.3) и (7.3) позволяют определять значения нормальных и касательных напряжений в любых площадках, проходящих через данную точку, если известны напряжения в любых двух проходящих через нее взаимно перпендикулярных площадках.

Определим по формуле (6.3) сумму нормальных напряжений в двух взаимно перпендикулярных площадках, для одной из которых угол а равен а для другой

т. е.

(8.3)

т. е. сумма величин нормальных напряжений в двух взаимно перпендикулярных площадках есть величина постоянная. Следовательно, если в одной из таких площадок нормальные напряжения имеют максимальное значение, то в другой они имеют минимальное значение.

При исследовании напряженного состояния сначала определяют напряжения по трем взаимно перпендикулярным площадкам, проходящим через рассматриваемую точку тела.

Рис. 4.3

Если одна из этих площадок оказывается свободной от напряжении, то напряженное состояние является плоским. Бесконечно малый элемент в форме параллелепипеда, выделенный из тела указанными тремя площадками и тремя другими, им параллельными, показан на рис. 4.3, с. Его принято изображать в виде прямоугольника (или квадрата), представляющего собой проекцию элемента на плоскость, совпадающую с площадкой, свободной от напряжений (рис. 4.3,б). Значения напряжений достаточно указывать на двух взаимно перпендикулярных боковых гранях параллелепипеда.

Если требуется показать напряжения, возникающие не в одной паре взаимно перпендикулярных площадок, проходящих через данную точку, а в нескольких, то соответствующие прямоугольники (или квадраты) могут изображаться, как это, например, показано на рис. 4.3, в.

По напряжениям в двух взаимно перпендикулярных площадках можно вычислить [с помощью формул (6.3) и (7.3)] напряжения в любых площадках; поэтому рисунок (например, 4.3, б, в), на котором показаны эти напряжения, можно рассматривать как изображение напряженного состояния в точке.

Рис. 5.3

Любое напряженное состояние можно рассматривать как сумму нескольких напряженных состояний (принцип наложения напряжений). Так, например, напряженное состояние, показанное на рис. 5.3, а, можно рассматривать как сумму напряженных состояний, изображенных на рис. 5.3, б,в.

<< Предыдущий параграф Следующий параграф >>
Оглавление