ЕГЭ и ОГЭ
Хочу знать
Главная > Физика > Сопротивление материалов
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 4.7. ЭПЮРЫ ВНУТРЕННИХ УСИЛИЙ

При расчете на прочность необходимо знать закон изменения внутренних усилий в поперечных сечениях балки по ее длине, возникающих от действующей на балку нагрузки. Этот закон можно выразить в виде аналитических зависимостей и изобразить с помощью специальных графиков, называемых эпюрами.

Эпюрой изгибающих моментов (эпюрой ) называется график, изображающий закон изменения величин этих моментов по длине балки. Аналогично эпюрой поперечных сил (эпюрой Q) или эпюрой продольных сил (эпюрой N) называется график, изображающий изменение поперечных или продольных сил по длине балки.

Каждая ордината эпюры М (или Q, или N) представляет собой величину изгибающего момента (или поперечной силы, или продольной силы) в соответствующем поперечном сечении балки.

Разберем на конкретных примерах построение эпюр для балок, находящихся под действием системы сил, расположенных в одной плоскости (параллельной плоскости чертежа).

Построим эпюры Q и М для консольной балки, заделанной правым концом, изображенной на рис. 10.7, а.

Рис. 10.7

Назовем участком балки каждую ее часть, в пределах которой законы изменения поперечной силы и изгибающего момента остаются постоянными. Границами участков являются поперечные сечения балки, в которых к ней приложены сосредоточенные нагрузки (в том числе опорные реакции) или в которых начинается либо заканчивается распределенная нагрузка, или в которых интенсивность этой нагрузки начинает изменяться по новому закону.

Рассматриваемая балка имеет четыре участка I, II, III и IV, показанных на рис. 10.7, а.

Составим [на основании формул (3.7) и (2.7)] выражения поперечной силы и изгибающего момента в поперечном сечении балки на расстоянии х от ее левого конца.

Участок :

Здесь -равнодействующая равномерно распределенной нагрузки в пределах отрезка длиной участка I. Она приложена посредине этого отрезка, а потому ее момент относительно рассматриваемого сечения равен Знак поперечной силы отрицателен потому, что проекция равнодействующей направлена вниз; знак изгибающего момента отрицателен потому, что момент действует против часовой стрелки.

В окончательные выражения значение подставляется в метрах, так как интенсивность q выражена в

Полученные выражения Q и действительны в пределах участка I, т. е. при расстоянии имеющем значения в пределах от 0 до

Зависимость от линейная, а потому для построения эпюры Q на участке достаточно определить величины при двух значениях

при (в начале участка I)

при (в конце участка I)

Зависимость М от не линейная, а квадратичная. Для построения эпюры М на участке вычисляем величины при трех значениях

По полученным значениям на рис. 10.7, б, в, построены эпюры Q и М для участка балки (прямая и кривая )

Ординаты эпюр, соответствующие положительным значениям внутренних усилий, откладываем вверх от осей этих эпюр, а отрицательным — вниз (оси эпюр параллельны оси балки). При таком построении ординаты эпюр М получаются расположенными со стороны сжатых волокон балки.

Участок

где расстояние выражено в метрах.

При (в начале участка II)

при (в конце участка )

По полученным значениям на рис. 10.7,б,в построены эпюры Q и М для участка II балки (прямые к и Участок III:

При (в начале участка III)

при (в конце участка III)

По полученным значениям на рис. 10.7, б,в построены эпюры Q и М для III участка балки (прямые и с). Участок IV:

По полученным значениям на рис. 10.7,б,в построены эпюры Q и М для участка IV балки (прямые ).

Изгибающие моменты и поперечные силы в поперечных сечениях можно определить и через правые внешние силы, используя зависимости Но для этого требуется найти значения опорных реакций в заделке В балки.

Выделим теперь из балки часть CD длиной (рис. 10.7, а) и приложим к ней все действующие на нее внешние силы (рис. 10.7, г). К ним относятся сила и момент а также силы и моменты, приложенные к рассматриваемой части в поперечных сечениях С и эти силы и моменты равны поперечным силам и изгибающим моментам в сечениях С и D и представляют собой воздействие частей АС и DB на часть

Поперечная сила в сечении С балки, как это видно из эпюры Q (рис. 10.7,б), равна и отрицательна; в соответствии с принятым правилом знаков она стремится вращать часть CD балки против часовой стрелки, относительно некоторой точки Е балки (рис. 10.7, г) и, следовательно, должна быть направлена вниз. Поперечная сила QD в сечении D положительна, равна (рис. 10.7,б) и, следовательно, стремится вращать часть CD балки по часовой стрелке относительно точки ?; поэтому она должна быть направлена вниз (рис. 10.7, г).

Изгибающие моменты и MD в сечениях С и D равны соответственно т. е. они отрицательны (рис. 10.7, в); следовательно, оба они вызывают сжатие нижних и растяжение верхних волокон балки. В соответствии с этим момент направлен против часовой стрелки, а момент часовой стрелке.

Убедимся в том, что выделенная часть CD балки находится в равновесии. Для этого составим три уравнения равновесия всех действующих на нее сил (см. рис. 10.7, г):

Равенство нулю значений и свидетельствует о равновесии части CD балки.

На рис. 10.7, (3 показаны внутренние усилия, действующие в сечении В балки, совпадающем с заделанным ее концом. Их величины и направления установлены по эпюрам Q и М (рис. 10.7, б,в). Они представляют собой реакции защемления В балки.

Из эпюры Q (рис. 10.7, б) видно, что в сечении F балки, в котором к ней приложена сосредоточенная сила значение поперечной силы изменяется скачкообразно от до т. е. на величину Р.

Это является следствием того, что в выражение составляемое для сечения, расположенного на расстоянии левее силы Р, эта сила не входит; в выражение же составляемое для сечения, расположенного на расстоянии правее силы Р, она входит.

Итак, в сечении, в котором к балке приложена сосредоточенная внешняя сила, перпендикулярная к оси балки (в том числе и опорная реакция в виде сосредоточенной силы), значение поперечной силы Q изменяется скачкообразно на величину приложенной силы. Когда сосредоточенная внешняя сила направлена вверх, на эпюре Q (при перемещении слева направо) имеется скачок вверх, а когда сила направлена вниз — скачок вниз.

Аналогично в сечении, в котором к балке приложен сосредоточенный внешний момент (в том числе и опорная реакция в виде сосредоточенного момента), значение изгибающего момента М изменяется скачкообразно на величину приложенного момента. Когда сосредоточенный внешний момент действует по часовой стрелке, на эпюре М (при перемещении слева направо) имеется скачок вверх; а когда момент действует против часовой стрелки — скачок вниз. Так, например, в сечении G балки, в котором приложен к ней сосредоточенный момент (рис. 10.7, а), на эпюре М (рис. 10.7, в) имеется скачок вверх (при перемещении слева направо), равный а в сечении В—скачок вниз, равный (т. е. равный реакции опоры В в виде сосредоточенного момента, направленного против часовой стрелки).

Построим теперь эпюры Q и М для простой балки на двух опорах, изображенной на рис. 11.7, а. Балка состоит из двух участков.

Определим вертикальные опорные реакции RA и RB балки. В опоре А может возникать и горизонтальная реакция, однако при заданной вертикальной нагрузке она равна нулю. Для определения реакций и RB составим уравнения равновесия в виде сумм моментов всех сил относительно точек А и В:

или

откуда

или

откуда

Для проверки найденных значений RA и RB составим уравнение равновесия в виде суммы проекций всех сил на вертикальную ось:

Следовательно, реакции RA и RB определены правильно.

Рис. 11.7

Составим [на основании формул (3.7) и (2.7)] выражения поперечных сил и изгибающих моментов в поперечных сечениях балки. Участок

где — расстояние (в метрах) от левого конца балки до рассматриваемого сечения.

При (на левом конце балки в начале участка I)

при (в конце участка I)

В середине участка I (при )

На участке l балки изгибающий момент имеет максимальное значение; определение его дано ниже в § 5.7.

Участок

где — расстояние (в метрах) от правого конца балки до рассматриваемого сечения.

При (на левом конце участка 11)

при (в середине участка II)

при (на правом конце балки — в сечении В)

По полученным значениям на рис. построены эпюры. Q и М. На эпюре Q имеются уступы (скачки) в сечениях А, С и В, равные величинам внешних сил RA, Р и RB. На эпюре М уступов нет, так как на балку не действуют внешние сосредоточенные моменты.

<< Предыдущий параграф Следующий параграф >>
Оглавление