§ 4.1. НАПРЯЖЕНИЯ
Как уже известно, внешние сосредоточенные (т. е. приложенные в точке) нагрузки реально не существуют. Они представляют собой статический эквивалент распределенной нагрузки.
Аналогично сосредоточенные внутренние силы и моменты, характеризующие взаимодействие между отдельными частями элемента (или между отдельными элементами конструкции), являются также лишь статическим эквивалентом внутренних сил, распределенных по площади сечения.
Рис. 7.1
Рис. 8.1
Эти силы, так же как и внешние нагрузки, распределенные по поверхности, характеризуются их интенсивностью, которая равна
где — равнодействующая внутренних сил на весьма малой площадке проведенного сечения (рис. 7.1, а).
Разложим силу на две составляющие: касательную АТ и нормальную , из которых первая расположена в плоскости сечения, а вторая перпендикулярна к этой плоскости.
Интенсивность касательных сил в рассматриваемой точке сечения называется касательным напряжением и обозначается (тау), а интенсивность нормальных сил — нормальным напряжением и обозначается (сигма). Напряжения выражаются формулами
(2.1)
Напряжения имеют размерность и т. д.
Нормальное и касательное напряжения являются составляющими полного напряжения в рассматриваемой точке по данному сечению (рис. 7.1, б). Очевидно, что
Нормальное напряжение в данной точке по определенному сечению характеризует интенсивность сил отрыва или сжатия частиц элемента конструкций, расположенных по обе стороны этого сечения, а касательное напряжение — интенсивность сил, сдвигающих эти частицы в плоскости рассматриваемого сечения. Величины напряжений а и в каждой точке элемента зависят от направления сечения, проведенного через эту точку.
Совокупность напряжений , действующих по различным площадкам, проходящим через рассматриваемую точку, представляет собой напряженное состояние в этой точке.
Нормальные и касательные напряжения имеют в сопротивлении материалов весьма важное значение, так как от их величин зависит прочность сооружения.
Нормальные и касательные напряжения в каждом поперечном сечении бруса связаны определенными зависимостями с внутренними усилиями, действующими в этом сечении. Для получения таких зависимостей рассмотрим элементарную площадку поперечного сечения F бруса с действующими по этой площадке нормальными а и касательными напряжениями (рис. 8.1). Разложим напряжения на составляющие параллельные соответственно осям у и . На площадку действуют элементарные силы параллельные соответственно осям Проекции всех элементарных сил (действующих на все элементарные площадки сечения F) на оси и их моменты относительно этих осей определяются выражениями
В левых частях этих выражений указаны внутренние усилия, действующие в поперечных сечениях бруса, а именно: N — продольная сила; — поперечные силы, параллельные соответственно осям ; Мн — крутящий момент; — изгибающий момент относительно оси у (действующий в плоскости изгибающий момент относительно оси z (действующий в плоскости ).