ЕГЭ и ОГЭ
Хочу знать
Главная > Схемотехника > Радиотехнические цепи и сигналы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

15.11. СИНТЕЗ ЦИФРОВЫХ ФИЛЬТРОВ. ОБЩИЕ ЗАМЕЧАНИЯ

Как и аналоговые, цифровые фильтры обычно синтезируются на основе передаточной функции, представленной в виде рациональной дроби (12.33). В результате соответствующей аппроксимации заданной передаточной функции определяется положение нулей и полюсов на z-плоскости, после чего находятся весовые коэффициенты входящие в (12.34).

Цифровой фильтр можно реализовать либо в виде совокупности простых звеньев (первого или второго порядка), либо в виде канонической схемы, описанной в § 12.3 (см. рис. 12.6).

При разбиении фильтра на простые звенья отпадают все ограничения, отмеченные в § 15.2 по отношению к аналоговым цепям. В цифровых цепях вопросы согласования входных, выходных и нагрузочных сопротивлений, а также вопросы развязки отдельных звеньев вообще не возникают. В связи с этим наряду с каскадным (последовательным) соединением простых звеньев широко применяется их параллельное включение.

В первом случае функция (12.33) записывается в виде произведения простых множителей, каждый из которых является передаточной функцией звена (см. аналогичное разбиение в § 15.2). Во втором случае функция (12.33) разлагается на простые дроби

где — вычет функции в полюсе

Если знаменатель содержит всего m корней, из которых — число вещественных (лежащих на действительной оси), а — число комплексносопряженных пар корней , то

Это выражение легко приводится к виду

где

Как в каскадной, так и в параллельной схеме отдельные звенья реализуются по схеме, описанной в § 12.8 (см. рис. 12.21). Весовые коэффициенты звена второго порядка определяются по формуле (12.57), а звена первого порядка — непосредственно из передаточной функции звена.

Существенно различны подходы к синтезу трансверсальных и рекурсивных фильтров.

В § 12.2 отмечалось, что передаточная функция трансверсального фильтра не имеет полюсов и импульсная характеристика является ограниченной последовательностью , содержащей отсчетов, где Н — число элементов памяти, а значения равны весовым коэффициентам фильтра .

Рис. 15.17. Симметричная (а) и антисимметричная (б) импульсные характеристики трансверсального фильтра

Из этого следует, что задание импульсной характеристики непосредственно определяет как структуру трансверсального фильтра, так и его передаточную функцию

В случае же рекурсивного фильтра структура и весовые коэффициенты более сложным образом связаны с импульсной характеристикой и передаточной функцией. Эти вопросы рассматриваются в следующем параграфе. Здесь мы рассмотрим некоторые особенности синтеза трансверсальных фильтров.

В § 12.8 и 15.10 приводились примеры простейших трансверсальных фильтров со строго линейной ФЧХ. Выявим требования к весовым коэффициентам, при которых обеспечивается линейность ФЧХ при любом значении N. Используем для этого выражение (12.9) и для сокращения записи ограничимся значением

Соответствующая этой передаточной функции импульсная характеристика представлена на рис. 15.17, а.

Наложим условие симметрии весовых коэффициентов, т. е. и вынесем за скобки множитель

Выбор знака плюс или минус перед правой частью приведенного выражения зависит от соотношения коэффициентов , а также от их знаков, фазовая же характеристика линейна и определяется как

где k = 1,2, 3,... при нечетных значениях .

При четных это выражение принимает вид

Фильтры с линейной ФЧХ можно осуществить также при антисимметричной импульсной характеристике (рис. 15.7, б).

Трансверсальные фильтры с линейной ФЧХ применяются в дифференцирующих устройствах, а также при исследовании различных систем с нелинейными ФЧХ. Большое число элементов памяти и весовых коэффициентов, достигающее сотен, не является препятствием при использовании микроэлектронной аппаратуры.

<< Предыдущий параграф Следующий параграф >>
Оглавление