ЕГЭ и ОГЭ
Хочу знать
Главная > Схемотехника > Радиотехнические цепи и сигналы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

3.4. УГЛОВАЯ МОДУЛЯЦИЯ. ФАЗА И МГНОВЕННАЯ ЧАСТОТА КОЛЕБАНИЯ

Для простого гармонического колебания

набег фазы за какой-либо конечный промежуток времени от до равен

Отсюда видно, что при постоянной угловой частоте набег фазы за какой-либо промежуток времени пропорционален длительности этого промежутка.

С другой стороны, если известно, что набег фазы за время равен , то угловую частоту можно определить как отношение

если, конечно, имеется уверенность, что в течение рассматриваемого промежутка времени частота сохраняла постоянное значение.

Из (3.16) видно, что угловая частота есть не что иное, как скорость изменения фазы колебания.

Переходя к сложному колебанию, частота которого может изменяться во времени, равенства (3.15), (3.16) необходимо заменить интегральным и дифференциальным соотношениями

В этих выражениях — мгновенная угловая частота колебания; — мгновенная частота.

Согласно выражениям (3.17), (3.18) полную фазу высокочастотного колебания в момент t можно определить как

где первое слагаемое в правой части определяет набег фазы за время от начала отсчета до рассматриваемого момента — начальная фаза колебания (в момент ).

При таком подходе фазу , фигурирующую в выражении (3.1), следует заменить на .

Итак, общее выражение для вы сокочастотного колебания, амплитуда которого постоянна, т. е. , а аргумент модулирован, можно представить в форме

Соотношения (3.18), (3.19), устанавливающие связь между изменениями частоты и фазы, указывают на общность двух разновидностей угловой модуляции — частотной и фазовой.

Рис. 3.12. Представление высокочастотного колебания при угловой модуляции в виде качающегося вектора

Поясним соотношения на примере простейшей гармонической ЧМ, когда мгновенная частота колебания определяется выражением

где представляет собой амплитуду частотного отклонения. Для краткости в дальнейшем будем называть девиацией частоты или просто девиацией. Через и как и при АМ, обозначены несущая и модулирующая частоты.

Составим выражение для мгновенного значения колебания (тока или напряжения), частота которого изменяется по закону (3.21), а амплитуда постоянна.

Подставляя в (3.19) из уравнения (3.21), получаем

Выполнив интегрирование, найдем

Таким образом,

Фаза колебания, наряду с линейно-возрастающим слагаемым содержит еще периодическое слагаемое Это позволяет рассматривать как колебание, модулированное по фазе. Закон этой модуляции является интегральным по отношению к закону изменения частоты. Именно модуляция частоты по закону приводит к модуляции фазы по закону . Амплитуду изменения фазы

часто называют индексом угловой модуляции.

Заметим, что индекс модуляции совершенно не зависит от средней (немодулированной) частоты , а определяется исключительно девиацией и модулирующей частотой .

Рассмотрим теперь противоположный случай, когда стабильное по частоте и фазе колебание пропускается через устройство, осуществляющее периодическую модуляцию фазы по закону так что колебание на выходе устройства имеет вид

Какова частота этого колебания? Используя выражение (3.18), находим

Учитывая соотношение (3.24), приходим к выводу, что . Таким образом, гармоническая модуляция фазы с индексом эквивалентна частотной модуляции с девиацией .

Из приведенного примера видно, что при гармонической угловой модуляции по характеру колебания нельзя заключить, с какой модуляцией мы имеем дело — с частотной или фазовой. В обоих случаях вектор ОЛ, изображающий на векторной диаграмме модулированное колебание, качается относительно своего исходного положения таким образом, что угол (рис. 3.12) изменяется во времени по закону при фазовой модуляции, при частотной модуляции (когда ). Цифрами I, II, III и IV отмечено положение вектора ОА при

Иное положение при негармоническом модулирующем сигнале. В этом случае вид модуляции — частотной или фазовой — можно установить непосредственно по характеру изменения частоты и фазы во времени.

Покажем это на примере пилообразного модулирующего сигнала (рис. 3.13, а и г). Очевидно, что пилообразное изменение (рис. 3.13, б), по форме совпадающее с свидетельствует о наличии ЧМ, а такое же изменение (рис. 3.13, д) — о наличии ФМ.

Рис. 3.13. Сравнение функций при ЧМ и ФМ при пилообразном модулирующем сигнале

Рис. 3.14. Зависимость индекса и девиации от модулирующей частоты при ЧМ (а) и ФМ (б)

Ясно также, что скачкообразное изменение совпадающее по форме с производной сигнала (рис. 3.13, е), указывает на ФМ.

При гармоническом модулирующем сигнале различие между ЧМ и ФМ можно выявить, только изменяя частоту модуляции.

При ЧМ девиация пропорциональна амплитуде модулирующего напряжения и не зависит от частоты модуляции .

При ФМ величина пропорциональна амплитуде модулирующего напряжения и не зависит от частоты модуляции .

Эти положения поясняются рис. 3.14, на котором показаны частотные характеристики величин при частотной и фазовой модуляциях. В обоих случаях предполагается, что на вход модулятора подается модулирующее напряжение с неизменной амплитудой U, а частота изменяется от до

При ЧМ зависящая, как указывалось выше, только от амплитуды U, будет постоянной величиной, а индекс модуляции с увеличением частоты будет убывать (рис. 3.14, а). При ФМ не зависит от , а изменяется пропорционально частоте модуляции (рис. 3.14, б).

Кроме структуры колебания (при модуляции сложным сигналом) частотная и фазовая модуляции различаются и способом осуществления. При ЧМ обычно применяется прямое воздействие на частоту колебаний генератора. При ФМ генератор дает стабильную частоту, а фаза колебания модулируется в одном из последующих элементов устройства.

<< Предыдущий параграф Следующий параграф >>
Оглавление