ЕГЭ и ОГЭ
Живые анекдоты
Главная > Схемотехника > Радиотехнические цепи и сигналы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

8.11. ПРЕОБРАЗОВАНИЕ ЧАСТОТЫ СИГНАЛА

В радиотехнике часто требуется осуществить сдвиг спектра сигнала по оси частот на определенное постоянное значение при сохранении структуры сигнала. Такой сдвиг называется преобразованием час

Для выяснения сути процесса преобразования частоты вернемся к вопросу о воздействии на нелинейный элемент двух напряжений, кратко рассмотренному в § 8.4. Однако в данном случае только одно из колебаний, именно то, которое создается вспомогательным генератором (гетеродином), будем считать гармоническим. Под вторым же колебанием будем подразумевать сигнал, подлежащий преобразованию, который может представлять собой любой сложный, но узкополосный процесс.

Таким образом, на нелинейный элемент воздействуют два напряжения: от гетеродина

от источника сигнала

Амплитуда частота и начальная фаза гетеродинного колебания — постоянные величины. Амплитуда же и мгновенная частота сигнала могут быть модулированными, т. е. могут являться медленными функциями времени (узкополосный процесс). Начальная фаза сигнала постоянная величина.

Задачей преобразования частоты является получение суммарной или разностной частоты . Как вытекает из выражения (8.30), для этого необходимо использовать квадратичную нелинейность,

В качестве нелинейного элемента возьмем, как и в § 8.9, диод, однако характеристику его для более полного выявления продуктов взаимодействия сигнала и гетеродинного колебания аппроксимируем полиномом четвертой степени (а не второй, как в § 8.4):

Слагаемые, содержащие различные степени только или только интереса не представляют. С точки зрения преобразования (сдвига) частоты основное значение имеют члены, представляющие собой произведения вида правой части выражения (8.72) обведены рамками.

Подставляя в эти произведения (8.70) и (8.71) и отбрасывая все составляющие, частоты которых не являются суммой соч или разностью после несложных тригонометрических выкладок приходим к следующему окончательному результату:

Из этого результата видно, что интересующие нас частоты возникают лишь благодаря четным степеням полинома, аппроксимирующего характеристику нелинейного элемента. Однако один лишь квадратичный член полинома (с коэффициентом ) образует составляющие, аплитуды которых пропорциональны только первой степени Более высокие четные степени (четвертая, шестая и т. д.) нарушают эту пропорциональность, так как амплитуды привносимых ими колебаний содержат также степени выше первой.

Отсюда видно, что амплитуды должны выбираться с таким расчетом, чтобы в разложении (8.72) преобладающее значение имели слагаемые не выше второй степени. Для этого требуется выполнение неравенств

Тогда выражение (8.73) переходит в следующее:

В радиоприемных и многих других устройствах, в которых задача преобразования частоты тесно связана с задачей усиления сигнала, обычно ?,

Первое слагаемое в фигурных скобках с частотой (производная от аргумента косинуса) соответствует сдвигу спектра сигнала в область высоких частот, а второе с частотой — в область низких частот. Для выделения одной из этих частот — разностной или суммарной — нужно применять соответствующую нагрузку на выходе преобразователя. Пусть, например, частоты очень близки и требуется выделить низкую частоту, расположенную около нуля. Такая задача часто встречается в измерительной технике (метод «нулевых биений»). В этом случае нагрузка должна быть такой же, как при амплитудном детектировании, т. е. состоять из параллельного соединения R и С, обеспечивающего отфильтровывание (подавление) высоких частот и выделение разностной частоты Если разностная частота лежит в диапазоне высоких частот, то для ее выделения следует применить резонансную колебательную цепь (рис. 8.42). Если полезной, подлежащей выделению является суммарная частота то контур соответственно должен быть настроен на частоту

Обычно полоса пропускания колебательной цепи, являющейся нагрузкой преобразователя, рассчитана на ширину спектра модулированного колебания. При этом все составляющие тока с частотами, близкими к , проходят через контур равномерно и структура сигнала на выходе совпадает со структурой сигнала на входе.

Рис. 8.42. Схема замещения преобразователя частоты

Рис. 8.43. Спектр сигнала на входе и выходе преобразователя:

Единственное отличие заключается в том, что частота на выходе равна или смотря по тому какова резонансная частота нагрузочной цепи.

Итак, при преобразовании частоты законы изменения амплитуды частоты и фазы входного колебания переносятся на выходное колебание. В этом смысле рассматриваемое преобразование сигнала является линейным, а устройство — линейным преобразователем или «смесителем».

В заключение следует отметить, что при выделении разностной частоты структура сигнала сохраняется лишь в том случае, когда . Если же , то спектр сигнала «переворачивается».

На рис. 8.43, а изображена спектральная диаграмма сигнала на входе и выходе преобразователя для случая, когда все частоты, входящие в спектр входного колебания, выше частоты гетеродина Преобразованный спектр, сдвинутый на величину влево, имеет такую же структуру, что и исходный спектр. В преобразованном спектре при (рис. 8.43, б) меняются местами.

При преобразовании частоты обычного AM колебания, спектр которого состоит из двух симметричных относительно боковых полос, переворачивание спектра внешне никак не проявляется; просто верхняя и нижняя боковые полосы меняются местами. Преобразование же ЧМ колебания, мгновенная частота которого при приводит к изменению мгновенной частоты выходного сигнала по закону т. e. к изменению знака перед отклонением частоты .

Из приведенных примеров ясно, что переворачивание спектра при преобразовании частоты необходимо принимать во внимание только в тех случаях, когда спектр сигнала несимметричен относительно своей центральной частоты (при ЧМ асимметрия заключается в том, что знаки перед нижними боковыми частотами при нечетных отрицательны, см. § 36).

При преобразовании частоты сигнала с несимметричным спектром для сохранения структуры спектра частота гетеродина должна быть ниже частот сигнала.

<< Предыдущий параграф Следующий параграф >>
Оглавление