ЕГЭ и ОГЭ
Хочу знать
Главная > Схемотехника > Радиотехнические цепи и сигналы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

8.6. УМНОЖЕНИЕ ЧАСТОТЫ

Наличие в составе импульсного тока ряда гармоник с частотами, кратными основной частоте возбуждения, позволяет использовать усилитель, работающий с отсечкой тока, в качестве умножителя частоты. Для этого не требуются какие-либо изменения в схеме резонансного усилителя, достаточно лишь нагрузочный колебательный контур настроить на частоту выделяемой гармоники и установить наиболее выгодный для подчеркивания полезной гармоники режим работы активного элемента. Из графиков, изображенных на рис. 8.12, видно, что для удвоения частоты выгодно работать с углом отсечки, близким к 60°, при котором коэффициент второй гармоники проходит через максимум, для утроения частоты — с углом отсечки 40° и т. д.

Если контур настроен на частоту , то гармоники тока порядков и более низких пройдут преимущественно через индуктивную ветвь, а гармоники порядков и более высоких — через емкостную ветвь контура. При достаточно высокой добротности напряжение на контуре от всех гармоник, за исключением очень мало. Поэтому напряжение на контуре близко к гармоническому с частотой .

Следует иметь в виду, что для полного использования мощности электронного прибора уменьшение угла отсечки должно осуществляться при поддержании амплитуды импульса неизменной. Для этого одновременно с изменением смещения нужно увеличивать амплитуду переменного напряжения на входе Е. На рис. 8.16 углу соответствует смещение углу — смещение амплитуды выбраны такими, что остается неизменной. Можно поэтому считать, что для умножителя частоты характерен режим работы с большими амплитудами входного напряжения.

Это обстоятельство наряду с уменьшением полезной мощности при повышении порядка умножения из-за убывания коэффициентов (см. рис. 8.12) существенно ухудшает энергетические соотношения в умножителях.

Схема замещения умножителя частоты внешне не отличается от схемы замещения нелинейного усилителя (см. рис. 8.15, б). Следует лишь по аналогии с выражением (8.33) под средней крутизной подразумевать

где коэффициент гармоники определяется формулой (8.26).

Рис. 8.16. К выбору угла отсечки в умножителе частоты при различных коэффициентах умножения

Рис. 8.17. Напряжение на выходе умножителя частоты при недостаточно высокой добротности резонансной цепи

Соответственно и внутреннее сопротивление электронного прибора, приведенное к используемой гармонике,

Умножений частоты широко применяется в радиопередающих устройствах с кварцевой стабилизацией частоты задающего генератора. Частота этого генератора выбирается относительно невысокой, в 4—12 раз меньшей рабочей частоты передатчика, благодаря чему создаются благоприятные условия для использования пьезоэлектрического эффекта кварцевой пластинки. Умножение частоты осуществляется в последующих каскадах передатчика на малой мощности. Чаще всего применяется удвоение, реже утроение частоты в одном каекаде.

Умножение частоты широко используется также в ряде измерительных устройств, когда требуется получить сетку частот, кратных какой-либо одной определенной частоте, рассматриваемой в качестве опорной. В подобных устройствах используется электронный прибор, работающий с очень малым углом отсечки. Подавая на вход достаточно большое переменное напряжение (при большом смещении), можно получить ток в виде последовательности весьма острых импульсов. Такой ток богат гармониками, образующими очень широкий линейчатый спектр. При воздействии этого спектра на контур напряжение на последнем может сильно отличаться от синусоидального, так как в полосу прозрачности контура попадает ряд гармоник. В подобных случаях напряжение на контуре часто удобно определять исходя не из спектрального представления импульсного тока, а из рассмотрения свободных колебаний, возбуждаемых каждым из импульсов тока в отдельности (рис. 8.17). В промежутке Т между двумя импульсами тока амплитуда напряжения на контуре убывает по закону

где — частота свободных колебаний в контуре; Q — добротность.

Если к началу следующего импульса колебание, вызванное предыдущим импульсом, не успевает полностью затухнуть, необходимо учитывать наложение свободных колебаний. При расчете и проектировании умножителя частоты приходится учитывать деформацию импульсов тока, обусловленную нелинейностью внутренних сопротивлений усилительного прибора. Эта деформация проявляется в приборах полупроводникового типа.

Умножение частоты возможно также и с помощью реактивных нелинейных элементов, например варакторов. Этот вопрос рассматривается в § 8.15.

<< Предыдущий параграф Следующий параграф >>
Оглавление