1.2. ПРЕОБРАЗОВАНИЕ СИГНАЛОВ В РАДИОТЕХНИЧЕСКИХ СИСТЕМАХ
В процессе передачи и приема сообщений сигналы подвергаются различным преобразованиям. Некоторые из этих преобразований являются типовыми, обязательными для большинства радиотехнических систем независимо от их назначения, а также от характера передаваемых сообщений. Перечислим эти фундам ентальные процессы и попутно отметим их основные черты применительно к обобщенной схеме радиотехнического канала, представленной на рис. 1.1.
Преобразование исходного сообщения в электрический сигнал и кодирование. При передаче речи и музыки такое преобразование осуществляется с помощью микрофона, при передаче изображений (телевидение) — с помощью передающих трубок (например, суперортикона). При передаче письменного сообщения (радиотелеграфия) сначала осуществляют кодирование, заключающееся в том, что каждая буква текста заменяется комбинацией стандартных символов (например, точек, тире и пауз в коде Морзе), которые затем преобразуют в стандартные электрические сигналы (например, импульсы разной длительности или разной полярности).

Рис. 1.1. Радиотехнический канал связи
Следует отметить, что схема на рис. 1.1 соответствует введению информации «в начале» канала связи, т. е. непосредственно в передатчике. Несколько иначе обстоит дело, например, в радиолокационном канале, где информация о цели (дальность, высота, скорость и т. д.) получается в результате приема радиоволны, отраженной от цели.
Генерация высокочастотных колебаний. Высокочастотный генератор является источником колебаний несущей частоты. В зависимости от назначения радиоканала связи мощность колебаний изменяется от тысячных долей до миллионов ватт. Естественно, что конструктивные формы и размеры этих генераторов различны — от простейшего малогабаритного элемента до грандиозного технического сооружения.
Основными характеристиками высокочастотного генератора являются частота и диапазонность (возможность быстрой перестройки с одной рабочей частоты на другую), мощность и КПД. Особенно важное значение для радиотехники имеет стабильность частоты колебаний. Условия распространения радиоволн и широкий спектр частот диктуют применение очень высоких несущих частот. Условия же обработки сигналов на фоне помех и необходимость ослабления взаимных помех между различными радиоканалами заставляют добиваться максимально возможного уменьшения абсолютных изменений частоты. Это приводит к чрезвычайно жестким требованиям к относительной стабильности частоты.
Управление колебаниями (модуляция). Процесс модуляции заключается в изменении одного или нескольких параметров высокочастотного колебания по закону передаваемого сообщения. Частоты модулирующего сигнала, как правило, малы по сравнению с несущей частотой генератора. Для осуществления модуляции используются различные приемы, обычно основанные на изменении потенциала электродов электронных приборов, входящих в радиопередающее устройство. Основная характеристика процесса модуляции — степень соответствия между изменением параметра высокочастотного колебания и модулирующим сигналом.
Усиление слабых сигналов в приемнике. Антенна приемника улавливает ничтожную долю энергии, излучаемой антенной передатчика. В зависимости от расстояния между передающей к приемной станциями, от степени направленности излучения антенн и условий распространения радиоволн мощность на входе приемника
. На выходе же приемника для надежной регистрации сигнала требуется мощность порядка единиц ватт и более. Отсюда следует, что усиление в приемнике должно достигать
по мощности или
по напряжению.
В современных приемниках уверенная регистрация сигнала обеспечивается при напряжениях на входе порядка 1 мкВ. Решение этой сложной задачи оказывается возможным благодаря достижениям современной электроники. Большую роль играют также специальные методы построения схем приемников, обеспечивающие большое усиление при сохранении устойчивости работы приемника.
Проблема усиления в приемнике неотделима от проблемы выделения сигнала на фоне помех. Поэтому одним из основных параметров приемника является избирательность, под которой подразумевается способность выделять полезные сигналы из совокупности сигнала и посторонних воздействий (помех), отличающихся от сигнала частотой. Частотная избирательность осуществляется с помощью резонансных колебательных цепей.
Выделение сообщения из высокочастотного колебания (детектирование и декодирование). Детектирование является процессом, обратным модуляции.
В результате детектирования должно быть получено напряжение (ток), изменяющееся во времени так же, как изменяется один из параметров (амплитуда, частота или фаза) модулированного колебания, т. е. должно быть восстановлено передаваемое сообщение. Детектор, как правило, включается на выходе приемника, следовательно, к нему подводится модулированное колебание, уже усиленное предыдущими ступенями приемника. Основное требование к детектору — точное воспроизведение формы сигнала.
После детектирования осуществляется декодирование сигнала, т. е. процесс, обратный кодированию. В ряде радиотехнических каналов кодирование и декодирование не используются.
Помимо перечисленных процессов, так или иначе связанных с преобразованием частотных спектров, в радиотехнических устройствах широкое применение находит усиление колебаний без трансформации частоты, осуществляемое в различных усилителях. К таким усилителям относятся: низкочастотные усилители управляющих сигналов, используемые перед модулятором передатчика, а также на выходе приемника;
усилители коротких импульсов, применяемые в телевизионной и радиолокационной технике, а также в импульсных системах радиосвязи;
высокочастотные усилители большой мощности, используемые в радиопередающих устройствах;
высокочастотные усилители слабых сигналов, применяемые в радиоприемных и измерительных устройствах.
Кроме упомянутых процессов, присущих, как уже отмечалось, любому радиотехническому каналу, в ряде специальных случаев широко применяются другие процессы: умножение и деление частоты, генерация коротких импульсов, различные виды импульсной модуляции и т. д.