ЕГЭ и ОГЭ
Хочу знать
Главная > Схемотехника > Радиотехнические цепи и сигналы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

Глава 9. ГЕНЕРИРОВАНИЕ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

9.1. АВТОКОЛЕБАТЕЛЬНАЯ СИСТЕМА

Любой автогенератор представляет собой нелинейное устройство, преобразующее энергию питания в энергию колебаний. Независимо от схемы и назначения автогенератор должен иметь источник питания, усилитель и цепь обратной связи. Из приведенных в гл. 5 сведений следует, что обратная связь должна быть положительной.

Настоящая глава в основном посвящена изучению явлений в автогенераторах, используемых для получения высокочастотных гармонических колебаний. В качестве усилительных элементов в подобных генераторах используются транзисторы, электронные лампы и другие аналогичные приборы, а в качестве цепей нагрузки — колебательные цепи с сосредоточенными или распределенными параметрами.

Автогенератор, находящийся в стационарном режиме, представляет собой обычный нелинейный усилитель, для возбуждения которого используются колебания, вырабатываемые в самом генераторе; колебания с выхода усилителя подаются на его вход по цепи обратной связи. Если амплитуда и фаза возбуждения отвечают определенным условиям, то в энергетическом отношении автогенератор ведет себя так же, как и генератор с внешним возбуждением. Однако генератор с самовозбуждением имеет существенные особенности. Частота и амплитуда автоколебания в стационарном режиме определяются только параметрами самого генератора, между тем как в генераторе с внешним возбуждением частота и амплитуда колебаний навязываются возбудителем. Кроме того, в случае самовозбуждения большое значение имеет механизм возникновения колебаний при запуске автогенератора.

Все эти особенности можно выявить, рассматривая поведение автогенератора в процессе нарастания колебаний от момента запуска до полного установления стационарного состояния. Можно наметить следующую картину. В момент запуска в колебательной цепи автогенератора возникают свободные колебания, обусловленные включением источников питания, замыканием цепей, электрическими флуктуациями и т. д. Благодаря положительной обратной связи эти первоначальные колебания усиливаются, причем на первом этапе, пока амплитуда мала, усиление практически линейно и цепь можно рассматривать как линейную.

Рис. 9.1. Структурная схема автогенератора

Энергетически процесс нарастания амплитуд объясняется тем, что за один период колебания усилитель передает в нагрузку энергию, большую той, которая расходуется в ней за это время. С ростом амплитуд начинает проявляться нелинейность устройства (кривизна вольт-амперной характеристики усилительного элемента) и усиление уменьшается. Нарастание амплитуд прекращается, когда усиление уменьшается до уровня, при котором только компенсируется затухание колебаний в нагрузке. При этом энергия, отдаваемая усилителем за один период, оказывается равной энергии, расходуемой за это же время в нагрузке.

Таким образом, на последнем этапе установления колебаний основную роль играет нелинейность цепи, без учета которой нельзя определить параметры стационарного режима автогенератора.

Любой автогенератор высокочастотных колебаний в стационарном режиме можно представить в виде схемы, показанной на рис. 9.1 обозначает частоту генерации). На этой схеме автогенератор изображен в виде сочетания трех четырехполюсников: одного нелинейного, безынерционного, и двух линейных. Нелинейный четырехполюсник соответствует усилительному элементу (транзистор, туннельный диод и т. д.), первый из линейных четырехполюсников — колебательной цепи автогенератора, а второй — цепи обратной связи. Подобное представление автогенератора справедливо для систем с внешней обратной связью.

В § 9.8 будут рассмотрены примеры автогенераторов, механизм работы которых приводит к внутренней обратной связи, требующей несколько иной трактовки обобщенной схемы.

Усилительный элемент совместно с избирательным четырехполюсником, обеспечивающим фильтрацию (подавление) высших гармоник, представляет собой обычный нелинейный усилитель, развивающий на выходе гармоническое напряжение. В общем случае усиление зависит как от частоты (из-за избирательности четырехполюсника), так и от амплитуды (из-за нелинейности усилительного элемента). Коэффициент усиления этого устройства обозначим через Очевидно, что

При фиксированной частоте является функцией только амплитуды .

Коэффициент передачи линейного четырехполюсника обратной связи, который в дальнейшем будем называть просто коэффициентом обратной связи, можно выразить через амплитуды

Но напряжение снимаемое с выхода четырехполюсника обратной связи, есть одновременно напряжение действующее на входе усилителя. Следовательно,

Сравнивая это выражение с (9.1), приходим к выводу, что в стационарном режиме автогенератора (когда только и можно пользоваться методом комплексных амплитуд) коэффициенты и являются взаимно обратными величинами:

Представим комплексные функции в форме

Тогда последнее равенство распадается на два условия:

Условие (9.2) называют условием баланса амплитуд: из него следует, что в стационарном режиме полное усиление на генерируемой частоте при обходе кольца обратной связи равно единице.

Так как коэффициент передачи линейного четырехполюсника Кос не зависит от амплитуды колебаний, то выражение (9.2) можно использовать для определения установившейся амплитуды колебания при заданном . Именно когда уменьшаясь с ростом амплитуды (из-за нелинейности вольт-амперной характеристики усилительного элемента), достигает значения дальнейший рост амплитуды, как указывалось ранее, прекращается. Это поясняется рис. 9.2. Стационарная амплитуда определяется как абсцисса точки пересечения графика с горизонталью, проведенной на уровне Кроме того, выражение (9.2) можно использовать для определения коэффициента обратной связи, требуемого для поддержания определенной амплитуды при заданной функции .

Условие (9.3) называют условием баланса фаз. Из него следует, что в стационарном режиме автоколебаний полный фазовый сдвиг при обходе кольца ОС равен (или кратен) . Условие баланса фаз позволяет определить частоту генерируемых колебаний .

Для установления перечисленных общих свойств автогенератора нам не требовалось уточнять ни тип усилительного элемента, ни вид схемы автогенератора. Это объясняется тем, что мы ограничились рассмотрением стационарного режима автогенератора. Для выяснения же механизма возникновения колебаний, а также механизма установления стационарного режима необходимо исходить из конкретного электронного прибора и конкретной схемы автогенератора.

Рис. 9.2. К определению стационарной амплитуды автоколебания

Отметим одно важное требование, предъявляемое к автогенератору, предназначенному для устройств передачи информации: вырабатываемое им колебание должно быть строго монохроматическим (в отсутствие модуляции). Любое нарушение монохроматичности, проявляющееся в паразитном изменении амплитуды, частоты или фазы колебания, может служить причиной возникновения помех в канале радиосвязи.

Требование монохроматичности включает в себя также и требование стабильности частоты автоколебания.

<< Предыдущий параграф Следующий параграф >>
Оглавление