ЕГЭ и ОГЭ
Хочу знать
Главная > Схемотехника > Радиотехнические цепи и сигналы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

Глава 8. НЕЛИНЕЙНЫЕ ЦЕПИ И МЕТОДЫ ИХ АНАЛИЗА

8.1. НЕЛИНЕЙНЫЕ ЭЛЕМЕНТЫ

Основные радиотехнические преобразования осуществляются с помощью либо нелинейных цепей, либо линейных цепей с переменными параметрами. Однако последние реализуются тоже с помощью нелинейных элементов (например, емкость -перехода в полупроводниковом диоде), а некоторые параметрические цепи сами работают в существенно нелинейном режиме (например, параметрический генератор). Приведем примеры некоторых Нелинейных элементов.

Следует различать резистивные (сопротивления) и реактивные (индуктивности, емкости) нелинейные элементы.

Для радиотехнических цепей и устройств наиболее характерными и распространенными резистивными нелинейными элементами являются полупроводниковые, ламповые и любые другие приборы, используемые для усиления или преобразования сигналов и имеющие нелинейную вольт-амперную характеристику. Важным параметром резистивного нелинейного элемента является крутизна его характеристики.

Различают два следующих определения крутизны характеристики: а) в рассматриваемой рабочей точке при слабом сигнале (дифференциальная крутизна) и б) при сильном гармоническом колебании (средняя крутизна).

Рис. 8.1. Линейный режим работы элемента с нелинейной вольт-амперной характеристикой

Рис. 8.2. Нелинейный режим работы элемента с той же вольт-амперной характеристикой, что и на рис. 8.1

Рис. 8.3. Вольт-кулонная и вольт-фарадная характеристики линейной и нелинейной емкостей

С первым определением крутизны, соответствующим линейному режиму работы прибора (рис. 8.1), мы имели дело в гл. 5, где эта крутизна определялась выражением [см. (5.30),

а напряжение приравнивалось (Для транзистора).

Второе определение крутизны соответствует существенно нелинейному режиму работы устройства (рис. 8.2) и может быть дано лишь при учете формы вольт-амперной характеристики нелинейного элемента в широких пределах, зависящих от амплитуды входного сигнала (это будет сделано в § 8.5).

Примером нелинейной емкости может служить любое устройство с нелинейной вольт-кулонной характеристикой q (и).

На рис. 8.3 изображены вольт-кулонная и вольт-фарадная характеристики нелинейной емкости и аналогичные характеристики для линейной емкости. Вольт-кулонная характеристика нелинейной емкости в рассматриваемом примере была задана выражением при . В дальнейшем нелинейная емкость будет обозначаться .

Если приложенное к емкости напряжение изменяется во времени, то ток через емкость можно определить с помощью одного из двух эквивалентных выражений

Если напряжение , где — напряжение в рабочей точке, а — изменение напряжения, причем , то емкость можно представить в виде

Определенную таким образом емкость иногда называют дифференциальной.

Параметр определяется крутизной вольт-кулонной характеристики . Показанная на рис. 8.3 зависимость от и определялась по формуле

Наконец, катушка с. ферромагнитным сердечником, обтекаемая сильным током, доводящим сердечник до магнитного насыщения, является примером нелинейной индуктивности .

Соотношение между током i и напряжением на индуктивности следует из исходного выражения для потокосцепления

Очевидно,

Если задано напряжение на индуктивности, то, очевидно,

и, как и в случае линейной индуктивности,

Под дифференциальной индуктивностью подразумевается величина

Понятиями «дифференциальные сопротивление, емкость и индуктивность» широко пользуются при рассмотрении воздействия относительно слабых сигналов на нелинейные элементы. При этом нелинейность элемента проявляется лишь в том, что зависят от управляющего напряжения (или тока), определяющего положение рабочей точки на нелинейной характеристике. По отношению же к слабому сигналу подобный элемент является линейным устройством с переменным параметром (если управляющее напряжение изменяется во времени).

Свойства таких элементов рассматриваются в гл. 10.

<< Предыдущий параграф Следующий параграф >>
Оглавление