ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Элементы высшей математики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

Глава 2. КООРДИНАТЫ

§ 1. Метод координат

Одпим из самых важных вопросов математики является определение положения точки. Это можно сделать многими способами.

На плоскости положение точки удобнее всего определять относительно двух взаимно перпендикулярных осей.

Оси должны быть заранее заданы и носят название координатных осей; одна из них называется осью абсцисс или осью иксов, другая осью ординат или осью игреков, точка их пересечения называется началом координат. Начало координат обозначается обычно буквой О, ось абсцисс обозначается ось ординат Координатные оси делят есвд. плоскость на четыре угла, которые называются координатными углами и которые мы будем нумеровать в порядке, указанном на рис. 26.

Рис. 26

Положение любой точки вполне определяется, если мы соединим начало координат с этой точкой и найдем величины проекций полученного вектора на оси. Построенный таким способом вектор имеет направление от начала координат к точке и носит название радиус-вектора данной точки, величина его проекции на ось абсцисс называется абсциссой точки, величина его проекции на ось ординат называется ординатой точки.

Заметим, что вообще числа, определяющие положение точки, называются координатами этой точки.

Абсцисса и ордината являются именно такими числами; поэтому их называют координатами точки на плоскости, причем добавляют слово прямоугольные так как координатные оси перпендикулярны.

Абсциссу мы будем обозначать буквой ординату — буквой у.

Мы зпаем, что знак величины проекции вектора какую-либо ось будет положителен, когда ее направление совпадает с направлением этой оси; в противном случае знак будет отрицателен.

Рассматривая чертеж, можно убедиться, что в различных координатных углах знаки координат точек будут такие:

Условились, обозначая точку, писать рядом в скобках ее координаты, причем на первом месте пишется абсцисса, а на втором — ордината. Например, для точек лежащих в различных углах (см. рис. 26), мы будем иметь обозначения

Очевидно, если точка лежит на оси абсцисс, то ее дината раина нулю; если же она лежит на оси ординат, ее абсцисса равна нулю. Например, координаты точек (см. рис. 26) таковы:

Для начала координат имеем обозначение

Произвольную точку плоскости обозначают так:

Очевидно, каждой точке плоскости соответствует пара чисел — ее координат — и, обратно, каждой произвольной паре чисел соответствует точка плоскости. С помощью координат мы производим учет всех точек плоскости. Такой учет имеет огромное значение: он позволяет соединить в одно единое целое геометрию и анализ. Анализ изучает свойства чисел и взаимоотношения между ними, к нему относятся, между прочим, арифметика и алгебра; геометрия изучает свойства фигур, которые все зависят от положения частей фигуры. Поэтому учет положения точек с помощью чисел даст возможность использовать в геометрии методы алгебраического анализа. При этом мы, с одной стороны, получаем возможность алгебраически решать чрезвычайно трудные геометрические задачи, с другой стороны геометрически пояснять теоремы анализа, которые приобретают от этого необычайную наглядность.

Каждое понятие, каждая теорема могут быть высказаны как бы на двух языках — на геометрическом и аналитическом. Например, на яэыке анализа задать точку означает вадать ее координаты, найти точку — значит найти ее координаты.

Решение геометрических задач с помощью анализа и составляет сущность метода координат, к изучению которого мы теперь и приступаем.

<< Предыдущий параграф Следующий параграф >>
Оглавление