Научная библиотека
Математический справочник
ЕГЭ и ОГЭ
Forex4you
Хочу знать
Научная библиотека
Главная
>
Математика
>
Элементы высшей математики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
<< Предыдущий параграф
Следующий параграф >>
Макеты страниц
§ 11. Сводка основных формул
Соберем теперь вместе все выведенные нами формулы;
<< Предыдущий параграф
Следующий параграф >>
Оглавление
ПРЕДИСЛОВИЕ
ЧАСТЬ ПЕРВАЯ. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ
§ 1. Ось
§ 2. Вектор
§ 3. Направленные углы
§ 4. Проекция вектора с оси на ось
§ 5. Векторные цепи
§ 6. Цепи углов
§ 7. Проекции вектора на две взаимно перпендикулярные оси
§ 8. Угол между двумя лекторами. Условия параллельности и перпендикулярности
S 9. Упражнения и контрольные вопросы
Глава 2. КООРДИНАТЫ
§ 1. Метод координат
§ 2. Основные задачи, решаемые методом координат
§ 3. Упражнения
Глава 3. ФУНКЦИИ
§ 1. Переменные в постоянные
§ 2. Понятие о функциональной зависимости
§ 3. Классификация математических функций
§ 4. Обзор и графическое изображение простейших функции одного аргумента
§ 5. Обратные функции
§ 6. Понятие об уравнении линии
§ 7. Упражнения
Глава 4. ПРЯМАЯ
§ 1. Уравнение прямой, проходящей через данную точку
§ 2. Общее уравнение прямой
§ 3. Частные случаи
§ 4. Переход к уравнению с угловым коэффициентом
§ 5. Построение прямой
§ 6. Определение угла между двумя прямыми
§ 7. Условие совпадения прямых
§ 8 Пересечение прямых
§ 9. Расстояние от точки до прямой
§ 10. Другой подход к выводу уравнения прямой
§ 11. Прямая, проходящая через две точки
§ 12. Уравнение прямой в отрезках на осях
§ 13. Задачи на прямую линию
Глава 5. ПРОСТЕЙШИЕ КРИВЫЕ. ПРЕОБРАЗОВАНИЕ КООРДИНАТ
§ 1. Окружность
§ 2. Эллипс. Построение посредством нитн. Зависимость между полуосями и полуфокусным расстоянием
§ 3. Построение эллипса по точкам
§ 4. Уравнение эллипса
§ 5. Связь эллипса с окружностью
§ 6. Директрисы эллипса
§ 7. Гипербола. Построение посредством нити
§ 8. Построение гиперболы по точкам
§ 9. Уравнение гиперболы
§ 10. Асимптоты. Геометрическое значение b
§ 11. Директрисы гиперболы
§ 12. Парабола. Построение по точкам
§ 13. Уравнение параболы
§ 14. Преобразование координат
§ 15. Пример на упрощение уравнения кривой путем параллельного переноса осей
§ 16. Поворот осей
§ 17. Общий случай
§ 18. Полярные координаты
§ 19. Спираль Архимеда
§ 20. Логарифмическая спираль
§ 21. Примеры на составление полярных уравнений кривых
§ 22. Выражение прямоугольных координат через полярные
§ 23. Уравнение лемнискаты
§ 24. Параметрическое задание линий
§ 25. Построение графика
§ 26. Циклоида
§ 27. Упражнения
Глава 6. ВЕКТОРЫ, ПОВЕРХНОСТИ И ЛИНИИ В ПРОСТРАНСТВЕ
§ 1. Оси, векторы, углы
§ 2. Проекции
§ 3. Проекции на три взаимно перпендикулярные оси. Длина вектора через проекции
§ 4. Простейшие зависимости, содержащие величину вектора, проекции и направляющие косинусы
§ 5. Проекция вектора на оси. Косинус угла между двумя векторами. Скалярное произведение векторов
§ 6. Координаты
§ 7. Выражение проекций вектора через координаты конца и начала
§ 8. Выражение длины вектора через координаты концов. Расстояние между двумя точками
§ 9. Деление отрезка в данном отношении
§ 10. График уравнения с двумя переменными
§ 11. Поверхность как след, образуемый перемещением некоторой деформируемой плоской кривой
§ 12. Цилиндрические поверхности
§ 13. Обратная задача. Уравнение шаровой поверхности
§ 14. Уравнение плоскости, проходящей через данную точку
§ 15. Общее уравнение плоскости
§ 16. Частные случаи
§ 17. Выяснение расположения плоскости относительно осей
§ 18. Угол между плоскостями. Условие параллельности. Условие перпендикулярности
§ 19. Условие совпадения плоскостей
§ 20. Расстояние от точке до плоскости
§ 21. Прямая как пересечение двух плоскостей
§ 22. Прямая, проходящая через данную точку
§ 23. Прямая, проходящая через две точки
§ 24. Переход от системы уравнений прямой в общем виде к системе в виде пропорций
§ 25. Угол между прямыми. Условие параллельности. Условие перпендикулярности
§ 26. Угол между прямой и плоскостью. Условие параллельности и перпендикулярности
§ 27. Простейшие поверхности. Эллипсоид
§ 28. Другие простейшие поверхности
§ 29. Кривая в пространстве как пересечение двух поверхностей
§ 30. Параметрические уравнения
§ 31. Винтовая линия
§ 32. Параметрические уравнения в механике
§ 33. Переход от параметрического представления к общему и обратно
§ 34. Преобразование координат
§ 35. Упражнения
ЧАСТЬ ВТОРАЯ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ
§ 1. Бесконечно малые
§ 2. Понятие предела переменной величины
§ 3. Понятие бесконечно большой
§ 4. Свойства бесконечно малых
§ 5. Основные свойства пределов
§ 6. Предел непрерывной функции
§ 7. Геометрическое истолкование непрерывности
§ 8. Свойство непрерывной функции
§ 9. Предел функции, зависящей от нескольких переменных
§ 10. Особые случаи разыскания предела
§ 11. Замечательный тригонометрический предел
§ 12. Признак существования предела
§ 13. Сходимость бесконечных рядов
§ 14. Простейшие признаки сходимости
§ 15. Основание натуральных логарифмов
§ 16. Порядок бесконечно малых
§ 17. Упражнения
Глава 2. ПРОИЗВОДНЫЕ И ДИФФЕРЕНЦИАЛЫ
§ 1. Производная как угловой коэффициент касательной
§ 2. Производная как предел
§ 3. Пояснение общей теории на примере. Уравнения касательной и нормали
§ 4. Механическое значение производной
§ 5. Производные трех простейших функций
§ 6. Производная постоянного и суммы. Вынесение постоянного множителя за знак производной
§ 7. Производная сложной функции
§ 8. Разыскание производных путем логарифмирования. Производные функции х^n при любом n к функции а^x.
§ 9. Производные произведения и частного. Производные tg x и ctg x.
§ 10. Производные обратных тригонометрических функций
§ 11. Сводка основных формул
§ 12. Дифференциал
§ 13. Основные формулы для дифференциалов
§ 14. Высшие производные
§ 15. Высшие дифференциалы
§ 16. Дифференцирование неявных функций
§ 17. Дифференцирование функций, заданных параметрическим способом
§ 18. Преобразование дифференциалов к новой переменной
§ 19. Упражнения
Глава 3. ПРИЛОЖЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ
§ 1. Непрерывность первой производной
§ 2. Возрастание и убывание функций. Максимум и минимум
§ 3. Приложение к построению графиков
§ 4. Наибольшее и наименьшее значения функции
§ 5. Прикладные задачи на наибольшее и наименьшее значения
§ 6. Направление выпуклости, точки перегиба
§ 7. Приложение к построению графиков
§ 8. Построение графиков разрывных функций
§ 9. Признак максимума и минимума, основанный на исследовании знака первой производной
§ 10. Признак максимума и минимума, основанный на исследовании знака второй и высших производных
§ 11. Асимптоты
§ 12. Дифференциал дуги
§ 13. Направляющие косинусы касательной
§ 14. Радиус кривизны, центр кривизны
§ 15. Дифференциал дуги и направляющие косинусы касательной для кривой в пространстве
§ 16. Упражнения
Глава 4. ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ
§ 1. Функции многих переменных. Область определения. Непрерывность
§ 2. Частные производные и полный дифференциал
§ 3. Частные производные и полный дифференциал сложной функции многих переменных
§ 4. Дифференцирование неявных функций
§ 5. Частные производные и полные дифференциалы высшего порядка
§ 6. Упражнения
ЧАСТЬ ТРЕТЬЯ. ОСНОВЫ ТЕОРИИ ЧИСЕЛ
Глава 1. ТЕОРИЯ ДЕЛИМОСТИ
§ 2. Общий наибольший делитель
§ 3. Общее наименьшее кратное
§ 4. Простые числа
§ 5. Единственность разложения на простые сомножители
§ 6. Непрерывные дроби и их связь с алгоритмом Евклида
Вопросы к главе 1
Глава 2. ВАЖНЕЙШИЕ ФУНКЦИИ В ТЕОРИИ ЧИСЕЛ
§ 1. Функции [x] и {x}
§ 2. Мультипликативные функции
§ 3. Число делителей и сумма делителей
§ 4. Функция Мёбиуса
§ 5. Функция Эйлера
Вопросы к главе II
Глава 3. СРАВНЕНИЯ
§ 2. Свойства сравнений, подобные свойствам равенств
§ 3. Дальнейшие свойства сравнений
§ 4. Полная система вычетов
§ 5. Приведенная система вычетов
§ 6. Теоремы Эйлера и Ферма
Вопросы к главе 3
Глава 4. СРАВНЕНИЯ С ОДНИМ НЕИЗВЕСТНЫМ
§ 2. Сравнения первой степени
§ 3. Система сравнений первой степени
§ 4. Сравнения любой степени по простому модулю
§ 5. Сравнения любой степени по составному модулю
Вопросы к главе 4
Глава 5. СРАВНЕНИЯ ВТОРОЙ СТЕПЕНИ
§ 2. Символ Лежандра
§ 3. Символ Якоби
§ 4. Случай составного модуля
Вопросы к главе 5
Глава 6. ПЕРВООБРАЗНЫЕ КОРНИ И ИНДЕКСЫ
§ 2. Первообразные корни по модулям
§ 3. Разыскание первообразных корней по модулям
§ 4. Индексы по модулям
§ 5. Следствия предыдущей теории
§ 6. Индексы по модулю 2^a
§ 7. Индексы по любому составному модулю
Вопросы к главе 6
Глава 7. ХАРАКТЕРЫ
§ 2. Важнейшие свойства характеров
Вопросы к главе 7
РЕШЕНИЯ ВОПРОСОВ
Решения к главе 2
Решения к главе 3
Решения к главе 4
Решения к главе 5
Решения к главе 6
ОТВЕТЫ К ЧИСЛЕННЫМ ПРИМЕРАМ