ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Элементы высшей математики
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 5. Частные производные и полные дифференциалы высшего порядка

а. Мы опять будем говорить лишь о функциях двух переменных (но рассуждения пригодны и для функций любого числа переменных).

Пусть имеем функцию

и - ее частные производные. Последние, очевидно, также являются функциями х и у, а поэтому также можно находить их частные производные по х и по у.

Частная производная по частной производной по называется частной производной второго порядка по и обозначается так:

Аналогично определяем и частную производную второго порядка по у:

Частная производная по у частной производной по называется смешанной второй частной производной по и по у:

Аналогично определяем вторую частную производную, взятую сначала по у, а потом по

Можно доказать, что для многих функций смешанная производная не зависит от порядка дифференцирования, то есть что

Мы не будем приводить (ввиду сложности) доказательства этого важного свойства, а продемонстрируем его на каком-либо примере.

Пусть, например, дана функция

Дифференцируем ее сначала по х, а потом по

Теперь продифференцируем эту функцию сначала по у, а потом по

Как мы видим, результат в обоих случаях получился одинаковым.

Если мы будем брать частные производные по и по у частных производных второго порядка, то получим частные производные третьего порядка

Аналогично определяем частные производные четвертого, пятого порядков и т. д.

b. Подобно тому как мы брали частные производные частных производных, мы можем брать полный дифференциал полного дифференциала. Результат называется вторым полным дифференциалом и обозначается так же, как второй дифференциал функции одной переменной, т. е. так:

Третьим полным дифференциалом называется полный дифференциал второго полного дифференциала и т.

c. Покажем теперь, как выражается второй полный дифференциал через частные производные второго порядка. Для общности мы допустим, что и у могут зависеть от каких-либо других переменных. Обозначим для краткости

тогда

Чтобы найти второй полный дифференциал, мы должны взять первый полный дифференциал первого полного дифференциала. Замечая при этом, что, как показано в пункте «е» § 3 этой главы, правило для дифференцирования суммы и произведения применимо и к полному дифференциалу, мы можем написать

Так как p и q сами являются функциями двух переменных х и у, то

Поэтому

Заметим, что

Подставляя их в последнюю формулу, после раскрытия скобок окончательно получим

Если х и у являются независимыми переменными или линейными функциями других каких-либо переменных, то их вторые дифференциалы равны нулю;

и формула (8) упрощается:

Мы видим, что закон инвариантности применим ко второму дифференциалу лишь с очень большими ограничениями: он будет верен только в том случае, если х и у являются линейными функциями других переменных, во всех остальных случаях он неприменим. Рассматривая формулу (9), мы видим, что она очень напоминает формулу квадрата суммы двух чисел. Эта аналогия навела на мысль записывать второй дифференциал в нижеследующей символической форме:

Если мы «возведем в квадрат» сумму, стоящую в скобках, «умножим» результат на , приписывая его всегда к , а затем будем считать показатели степени у круглых не за настоящие степени, а за указатели, то и получим формулу (9) для второго полного дифференциала.

d. Аналогично мы найдем выражение для третьего полного дифференциала через третьи частные производные, затем найдем выражение для четвертого, пятого дифференциалов и т. д. При этом если х и у — независимые переменные или линейные функции, то полученные выражения будут аналогичны кубу суммы, четвертой степени суммы двух слагаемых и вообще аналогичны биному Ньютона.

Применяя символическую запись, мы можем выражение для полного дифференциала представить в таком виде:

Если и является функцией переменных , то полный дифференциал символически запишется как полином Ньютона:

Заметим, что последнее выражение также предполагает, что являются независимыми переменными или же линейными функциями каких-либо других переменных, ввиду того, что закон инвариантности имеет здесь те же ограничения, какие указаны для второго полного дифференциала функции двух переменных.

<< Предыдущий параграф Следующий параграф >>
Оглавление