1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
Макеты страниц
§ 2. Понятие о функциональной зависимостиa. При рассмотрении количественной стороны различных процессов мы почти всегда наблюдаем, что переменные величины зависят друг от друга; например, путь проходимый свободно падающим в пустоте телом зависит только от времени, давление в паровом котле зависит только от температуры пара. Глубина океана в одном пункте постоянна, но в различных пунктах различна, она зависит только от двух переменных — от географической долготы и географической широты места. Высота растущего дерева зависим от многих переменных — от солнечного освещения, от влажности, от количества питательных веществ в почве и т. д. Мы видим, что некоторые переменные изменяются независимо, они и называются независимыми переменными или аргументами, другие же от них зависят их называют функциями. Сама зависимость называется функциональной. Между прочим, функциональная зависимость представляет собой одно из самых важных понятий математики. b. Следует всегда различать, от какого числа независимых переменных зависит функция. Проще всего поддаются изучению функции одной переменной, ими мы будем заниматься в первую очередь. Изучение функций многих переменных сложнее, но так или иначе сводится к изучению функций одной переменной. c. Если мы желаем записать математически, что переменная у зависит от Эта запись читается так:
Не; следует думать, что буква Точно так же, если функция U зависит от двух аргументов Здесь буквы f, х и у также не являются сомножителями. Совершенно ясно, как обозначается функция трех четырех и большего числа аргументов. Вместо буквы d. Записи типа (1) и (3) являются самыми общими обовначениями функций, так как под ними можно понимать какие угодно функции, а потому, имея в руках только эти обозначения, мы ничего не сможем узнать о свойствах этих функций. Для того чтобы иметь возможность изучать функцию нужно ее задать. e. Имеется много способов задать функцию, но все они сводятся к трем основным типам: 1) функцию можно задать таблицей ее числовых значений, соответствующих числовым значениям ее аргумента; 2) функцию можно задать графически; 3) функцию можно задать математической формулой. f. Приведем примеры. Известно, что при вращении махового колеса возникают напряжения, которые стремятся разорвать его обод. Если обод колеса сделан из однородного материала, то напряжения зависят только от скорости вращения. Обозначая скорость через v, а напряжение в ободе через Теория сопротивления материалов дает такую таблицу для значений функции (4), если обод сделан из литой стали: Здесь v измеряется в метрах в секунду — в ньютонах на квадратный сантиметр. Большим достоинством табличного способа Зсдания функции является то, что числа таблицы непосредственно могут быть использованы для различных вычислений. Недостатком является то, что всякая таблица дается не для всех значений аргумента, а через некоторые интервалы, так что, если каких-либо значений функции в таблице нет, то нужно брать более подробную таблицу; если же последней нет, то приходится подбирать нужное число более или менее приблизительног сообразуясь с характером изменения чисел таблицы, g. Большим недостатком является также и то, что если таблица содержит много чисел, то характер изменения функции уловить трудно. Наконец, третьим недостатком является то, что изучать свойства функции, заданной таблицей, трудно; кроме того, полученные свойства будут неточными. h. От первых двух недостатков свободен графический способ задания функции. Чтобы пояснить графический способ рассмотрим такой пример. Если какой-либо материал подвергнуть растяжению, то сила, необходимая для растягивания, будет зависеть от того, какое растяжение необходимо сделать, т. е. сила есть функция от удлинения. Если удлинение в процентах обозначить через X, а растягивающую силу, которая обычно измеряется в ньютонах на квадратный сантиметр, обозначить через Для различных материалов эта зависимость будет различной. Возьмем координатные оси и будем считать к за абсциссу, а Все эти точки расположатся на некоторой кривой, которая имеет различный вид для различных материалов. Существуют приборы, которые такие кривые чертят автоматически. Для мягкой стали мы получим следующую кривую (рис. 31): Рис. 31 k. Как мы видим, действительно графический снособ нагляден и дает значения функции для всех значений аргумента. Но третий недостаток и здесь имеет место. Изучать свойства функции заданной графически, все-таки затруднительно. l. Теперь покажем способ задания функции формулой Возьмем такой пример. Площадь круга очевидно зависит от радиуса. Если радиус обозначить через я, а площадь через у, то, как известно из геометрии, Так как оба катета мы можем изменять независимо друг от друга, то мы имеем здесь пример функции двух аргументов, заданной математически. Можно привести еще много примеров функций, заданyых математически, из области различных наук. m. Математический способ обладает огромным преимуществом перед другими способами задания функций, а именно: к изучению функций, заданных математически, можно привлечь математический анализ. Помимо того, если необходимо, всегда можно математический способ превратить в табличный. Действительно, мы вправе задать аргументам желательные нам числовые значения и по формуле вычислить сколько угодно значений функции. Таким образом, одна формула заменяет всю таблицу. n. Математический способ имеет только один недостаток, а именно, формула не дает наглядного представления об изменении функции. Однако этот недостаток мы всегда можем восполнить, так как всегда математический способ задания можно превратить в графический. Это делается так. o. Если мы имеем функцию одной переменной, то составляем таблицу и каждую пару значений аргумента p. Все сказанное свидетельствует о том, что математический способ задания функций является наиболее выгодным. Поэтому всегда стремятся, если функция задана таблицей или графиком, выразить ее формулой. Эта задача обычно очень трудная, но чрезвычайно важная для естествознания и технических наук. Без преувеличения можно сказать, что все проблемы механики, естествознания С другой стороны, математический анализ, получая эту прекрасную пищу, сам растет и совершенствуется. q. Ввиду того, что перевод на язык формул функциональных зависимостей не является непосредственной задачей математики, мы будем предполагать, что функции уже выражены формулами. Таким образом, в дальнейшем мы будем заниматься только функциями, заданными матетатически.
|
Оглавление
|