ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Численные методы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

3. Сравнение схем на тестах.

Для любой задачи даже на фиксированных сетке и шаблоне можно составить много разностных схем. Естественно, возникает вопрос: какую из схем использовать при решении реальной задачи? Как правило, традиционных оценок сходимости и точности для ответа недостаточно. Это связано с несовершенством теоретических методов исследования схем.

1) Для большинства нелинейных задач (например, газодинамических) нет доказательства сходимости или хотя бы устойчивости разностных схем. Соображения об их устойчивости и сходимости основаны на анализе линеаризованных задач.

2) Оценки точности схем являются асимптотическими при стремлении шага к нулю. Но быстродействие и память современных ЭВМ не настолько велики, чтобы можно было относительно сложные реальные задачи считать достаточно малым шагом. Например, для трехмерной задачи сетка из 27 000 узлов, соответствующая оперативной памяти ЭВМ БЭСМ-6, содержит всего 30 интервалов по каждой переменной.

Реально может оказаться, что схема первого порядка точности на грубых сетках даст более точный результат, чем схема второго порядка точности, хотя на подробных сетках соотношение будет обратным.

3) Обычно априорные оценки точности схем далеки от оптимальных. Они бывают завышены в десятки и сотни раз, и только в исключительных случаях удается получить неулучшаемые оценки. Но даже эти неулучшаемые оценки относятся к достаточно широкому классу решений, а для конкретного решения могут быть сильно завышены.

4) Даже наличие доказательства сходимости разностной схемы не гарантирует хорошего качества полученного по схеме решения. Сходимость в гильбертовой норме обеспечивает передачу только некоторых интегральных характеристик решения. Сходимость в чебышевской норме обеспечивает хорошее качество решения лишь при достаточной подробной сетке. В расчетах на грубых сетках при сходящейся схеме нередко возникает «разболтка», делающая результаты расчета фактически неприемлемыми.

Большой опыт численных расчетов показывает, что, помимо аппроксимации и устойчивости, разностные схемы должны удовлетворять добавочным критериям, обеспечивающим передачу некоторых качественных свойств решения. Хорошо известным критерием является консервативность схем или, в более общей форме, инвариантностьразностных уравнений относительно определенной группы преобразований. Другие употребительные критерии — это аппроксимационная вязкость схем или диссипативность первого дифференциального приближения и монотонность схем.

Вероятно, в дальнейшем будет создана достаточно строгая качественная теория разностных схем, позволяющая ответить на многие вопросы. Но даже после создания такой теории важным элементом работы останется экспериментальное исследование схем, т. е. проверка их на небольшой системе тестов.

Тестом может служить задача, которая содержит специфические трудности данного класса задач и точное решение которой известно. Это решение может задаваться формулой или находиться численно; в качестве тестов нередко используют автомодельные решения. Для проверки схемы следует провести серию из трех или более расчетов задачи-теста с последовательным сгущением сеток и сравнить разностное решение с точным.

Точность схемы оценивают по норме погрешности разностного решения. Для более полного изучения схемы проверяют сходимость в разных нормах (обычно в С и ). При этом обязательно сравнивают фактическую скорость убывания погрешности при теоретическим порядком точности схемы.

Возможны случаи, когда ожидаемый теоретический порядок точности не совпадает с фактическим. О чем это может свидетельствовать? Отметим некоторые типичные ситуации.

а) Метод теоретического исследования был строгим, а фактический порядок точности ниже теоретического. Возможны две причины. 1) Численный расчет был неправильным; например, программа для ЭВМ содержала ошибки.

2) При теоретическом анализе аппроксимация определялась на функциях более гладких, чем использованное в качестве теста решение .

б) Метод теоретического исследования был строгим, а фактический порядок точности выше теоретического. Это означает, что теоретическое исследование было недостаточно полным. Может быть, при доказательстве устойчивости использовались более сильные нормы для правых частей, чем в действительности необходимо; или погрешность аппроксимации определялась не на решении данной задачи, а на заметно более широком классе функций.

в) Метод исследования был нестрогим; например, устойчивость нелинейной схемы изучалась методом разделения переменных. В этом случае теоретическое исследование вообще не дает ответа, а лишь позволяет сделать довольно вероятный прогноз. Сравнение же на тестах позволяет установить здесь точный характер сходимости, правда, только на отдельных примерах.

Исследовать надо не только разностные схемы, но и сетки. Разные классы задач предъявляют разные требования к сеткам. Но лишь в отдельных случаях эти требования удается четко сформулировать; например, если точное решение имеет разрыв или другую особенность, то желательно совместить с ней узел сетки. В остальных же случаях приходится сравнивать сетки тоже на тестах. Зачастую удачный выбор сетки повышает точность расчета не меньше, чем усовершенствование разностной схемы.

<< Предыдущий параграф Следующий параграф >>
Оглавление