1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
Макеты страниц
2. Схемы бегущего счета.Эти схемы предназначены для решения смешанной задачи Коши (3), (5). Они легко обобщаются на случай любого числа измерений. Схемы бегущего счета являются наиболее простыми и позволяют численно решать даже очень сложные задачи переноса с хорошей точностью при умеренном объеме вычислений. Рассмотрим задачу (3), (5) и построим в области Выберем четыре шаблона, изображенные на рис. 56 — 59. Составим на трехточечных шаблонах (рис. 56 — 58) простейшие схемы с использованием односторонних производных: а на четырехточечном шаблоне (рис. 59) — схему с симметризованными производными: Правую часть мы для определенности выбираем в центре ячейки, соответствующей шаблону, хотя возможен и другой выбор. Рис. 56. Рис. 57. Рис. 58. Рис. 59. Организация расчета по этим схемам очень проста. Хотя формально схема (9) является явной, а остальные три — неявными, фактически при расчете сметанной задачи Коши они ведут себя, как явные. В самом деле, во всех четырех схемах значение Замечание 1. Явная схема (9) пригодна для решения задачи Коши на полубесконечной (или бесконечной) прямой; неявные схемы бегущего счета к такой задаче неприменимы. Правда, в практике численных расчетов задача Коши для уравнения переноса в неограниченной области почти не встречается. Из описанного алгоритма видно, что для каждой из схем (9)-(12) разностное решение при любых Схема (9). Исследуем ее погрешность аппроксимации. Пусть начальные и граничные данные дважды непрерывно дифференцируемы и удовлетворяют условиям согласования типа (6) с Отсюда легко определим невязку схемы (9):
При сделанных предположениях схема (9) имеет аппроксимацию, в Устойчивость исследуем при помощи принципа максимума. Критерий равномерной устойчивости по начальным данным (9.53) с константой Он выполняется только при так называемом условии Куранта: Таким образом, схема (9) является условно устойчивой в Методом разделения переменных можно доказать необходимость условия (14). Рассматривая отдельную гармонику легко получим множитель роста этой гармоники: Если т. е. амплитуды этих гармоник неограниченно нарастают при Непосредственно видно, что дополнительное условие устойчивости по правой части (9.54) выполняется, причем Тогда из теорем о сходимости следует, что если решение и Схема (10) исследуется аналогично; при исследовании аппроксимации разложение по формуле Тейлора удобнее вести, около узла обеспечивает сходимость со скоростью Схема (11) безусловно устойчива и на дважды непрерывно дифференцируемых решениях сходится со скоростью Схема (12) симметричная, и при исследовании ее аппроксимации целесообразно разлагать и Схема имеет второй порядок аппроксимации, если решение и Устойчивость схемы (12) при помощи принципа максимума установить не удается. Однако можно провести исследование методом разделения переменных. Для гармоники найдем Отсюда видно, что Дополнительный критерий устойчивости по правой части (9.54) после умножения на Убедимся, что для Из сказанного выше следует, что на трижды непрерывно дифференцируемых решениях Замечание 2. Схемы бегущего счета сходятся на решениях меньшей гладкости и даже на разрывных решениях (разумеется, не равномерно, а в среднем). Например, теоретический анализ и примеры численных расчетов [65, 66] показали, что схема (11) сходится на кусочно-непрерывных решениях в Замечание 3. Схемы бегущего счета очевидным образом обобщаются на случай неравномерной сетки. Например, схему (9) можно записать следующим образом: Критерии устойчивости (14) и (16) принимают при этом соответственно вид: Интересно сравнить схемы Схемы (9) — (11) имеют первый порядок точности. Первые две из них условно устойчивы, что неудобно при Численных расчетах. Схема (11) безусловно устойчива и очень надежна в расчете; однако по точности она уступает схемам (9) и (10), в чем нетрудно убедиться, сравнив невязки этих схем. Дальше мы увидим, что схемы (9) и (10) можно объединить в единую явно-неявную схему, безусловно устойчивую и превосходящую схему (11) по точности.
|
Оглавление
|