ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Численные методы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 2. Аппроксимация

1. Сетка и шаблон.

Для большинства разностных схем узлы сетки лежат на пересечении некоторых прямых линий (в многомерных задачах — гиперплоскостей), проведенных либо в естественной системе координат, либо в специально подобранной по форме области

Рис. 48.

Для двумерных задач в прямоугольной области G наиболее часто употребляют прямоугольную сетку (см. рис. 46), которую мы ввели при составлении схем (16) и (18). Заметно реже используют треугольную (рис. 48) или шестиугольную сетку. Для трехмерных задач наиболее употребительна сетка из прямоугольных параллелепипедов (рис. 49); другие виды сеток, например из прямоугольных трехгранных призм (рис. 50), используются редко.

Существуют некоторые разностные схемы, например, для задач двумерной и трехмерной газодинамики, где узлы сетки расположены неупорядоченно. Но такие схемы сколько-нибудь заметного распространения не получили.

Если одна из переменных имеет физический смысл времени t, то сетку обычно строят так, чтобы среди ее линий (или гиперплоскостей) были линии Совокупность узлов сетки, лежащих на такой линии или гиперплоскости, называют слоем.

Рис. 49.

Рис. 50.

На каждом слое выделяют направления — линии, вдоль которых меняется только одна пространственная координата. Например, для переменных есть направление ) и направление ).

Если область имеет форму прямоугольника, то часть узлов прямоугольной сетки естественно ложится на границу области (см. рис. 46); эти узлы называются граничными, а остальные узлы — внутренними. Начальные и краевые условия, наложенные на решение на границе можно в этом случае считать заданными в граничных узлах сетки.

Именно так было сделано при выводе соотношений (17) в примере из § 1, п. 4.

В случае двух пространственных переменных х, у граница области G(x, у) нередко бывает ломаной линией. Для таких областей всегда можно ввести такую треугольную сетку, чтобы естественные узлы сетки (пересечения линий сетки) легли на границу (см. рис. 48). Иногда удается добиться этого, используя прямоугольную сетку.

Рис. 51.

Если граница Г (G) криволинейная, то естественные узлы сетки на границу могут не попадать (рис. 51). В этом случае можно взять точки пересечения линий сетки с границей в качестве дополнительных узлов; тогда краевые условия следует задавать в этих узлах. Можно сделать иначе: границу приближенно заменить ломаной, проходящей через ближайшие к границе естественные узлы (жирная линия на рис. 51); тогда краевые условия, заданные на T(G), надо каким-либо образом перенести на эту ломаную.

Если область G является крутом (кольцом), цилиндром или шаром, то часто переходят к системам координат, связанных с видом области: полярным, цилиндрическим или сферическим. Если в таких координатах ввести прямоугольную сетку, то естественные узлы сетки лягут на границу. Иногда для построения хорошей сетки в областях сложной формы прибегают к конформному отображению на -квадрат, в котором введена прямоугольная сетка.

Составляя разностные схемы (16) и (18), мы использовали во всех внутренних точках области однотипную разностную аппроксимацию производных. Иными словами, при написании каждого разностного уравнения около некоторого узла сетки бралось одно и то же количество узлов, образующее строго определенную конфигурацию. Эту конфигурацию узлов называют шаблоном данной разностной схемы (см. рис. 47).

Узлы, в которых разностная схема записана на шаблоне, называются регулярными, а остальные узлы — нерегулярными. Нерегулярными являются обычно граничные узлы, а иногда также лежащие вблизи границы узлы (такие, что взятый около этого узла шаблон выходит за границу области). Так, в примере из § 1, п. 4 нерегулярными были граничные узлы, и в них разностная схема имела нестандартную форму (17).

Составление разностной схемы начинается с выбора шаблона. Шаблон не всегда определяет разностную схему однозначно, но существенно влияет на ее свойства; например, далее мы увидим, что на шаблоне рис. 47, б нельзя составить хорошей схемы для задачи (15).

Для каждого типа уравнений, и краевых задач требуется свой шаблон. В следующих главах сформулированы (на основе свойств решаемых уравнений) некоторые общие соображения, которые позволяют подбирать шаблоны, пригодные для построения хороших разностных схем.

Существуют разностные схемы, вообще не имеющие шаблона (пример такой схемы будет приведен в главе X). Но логическая структура таких схем сложна, что вызывает заметное увеличение объема программ и времени счета на ЭВМ. Поэтому такие схемы мало употребительны.

<< Предыдущий параграф Следующий параграф >>
Оглавление