ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Численные методы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

3. Метод Рунге — Ромберга.

При вычислении одной и той же величины формулы с большим числом узлов дают более высокий порядок точности, но они более громоздки. Для оценки их точности надо привлекать дополнительный узел, что требует еще более сложных вычислений. Рассмотрим более простой способ получения высокого порядка точности.

Из формулы (12) видно, что погрешность простейшей формулы (7) для четырежды дифференцируемой функции имеет вид , где — некоторая точка вблизи узла Если липшиц-непрерывна, то оценку нетрудно уточнить:

Пусть в общем случае имеется некоторая приближенная формула для вычисления величины по значениям на равномерной сетке с шагом h, а остаточный член этой формулы имеет следующую структуру:

Произведем теперь расчет по той же приближенной формуле для той же точки но используя равномерную сетку с другим шагом Тогда получим значение связанное с точным значением соотношением

Заметим, что Имея два расчета на разных сетках, нетрудно оценить величину погрешности. Для этого вычтем (13) из (14) и получим первую формулу Рунге:

Первое слагаемое справа есть главный член погрешности. Таким образом, расчет по второй сетке позволяет оценить погрешность расчета на первой сетке (с точностью до членов более высокого порядка).

Можно исключить найденную погрешность (15) из формулы (13) и получить результат с более высокой точностью по второй формуле Рунге:

Этот метод оценки погрешности и повышения точности результата очень прост, применим в большом числе случаев и исключительно эффективен. Рассмотрим два примера его применения к численному дифференцированию.

Таблица 7

Пример 1. Пусть функция задана таблицей 7 и требуется вычислить Выберем для вычислений простейшую формулу (6). Полагая , т. е. производя вычисления по точкам получим . Увеличивая шаг вдвое , т. е. вычисляя производную по точкам получим . Проводя вычисления по формуле Рунге (16), где согласно оценке (6) берется получим уточненное значение ; это всего 2% отличается от искомого значения .

Пример 2. Выведем формулу высокой точности из формулы низкой точности.

Возьмем простейшую формулу для вычисления первой производной в середине интервала (8) и запишем ее, выбирая сначала соседние узлы, а затем более удаленные:

Порядок точности формулы , а коэффициент увеличения шага , поэтому уточнение методом Рунге дает формулу (9):

Отсюда видно, что для получения высокого порядка точности не обязательно производить вычисления непосредственно по формулам высокого порядка точности; можно произвести вычисления по простым формулам низкой точности на разных сетках и затем уточнить результат методом Рунге. Последний способ предпочтительней еще потому, что величина поправки (15) дает апостериорную оценку точности.

Метод Рунге обобщается на случай произвольного числа . Пусть функция имеет достаточно высокие непрерывные производные. Тогда в разложениях Тейлора типа (11) можно удерживать большое число членов и подстановка их в формулы типа приводит к представлению остаточного члена в виде ряда

Пусть расчет проведен на q различных сетках с шагами . Тогда из остаточного члена можно исключить первые слагаемых. Для этого перепишем соотношение (17), оставляя первые члены погрешности:

Это система линейных уравнений относительно величии Решая ее по правилу Крамера, получим уточненное значение по формуле Ромберга

Эта формула приводит к повышению порядка точности результата на по сравнению с исходной формулой , т. е. каждая лишняя сетка позволяет повысить порядок точности на единицу.

Формула Ромберга удобна тем, что ее можно применять при любом числе равномерных сеток и любом соотношении их шагов. Ее недостатками являются сравнительная громоздкость и отсутствие в промежуточных выкладках апостериорных оценок точности. Если сетки выбраны так, что сгущение сеток происходит всегда в одно и то же число раз (т. е. ), то вместо формулы Ромберга удобнее рекуррентно применять метод Рунге.

Для этого берут последовательные пары сеток и т. д. По каждой паре производят уточнение методом Рунге, исключая тем самым главный член погрешности . Поэтому в уточненных величинах главный член погрешности будет иметь вид , где шаг можно условно принять для первой пары сеток за для второй — за и т. д. (это верно, только если одинаково для всех пар сеток). Уточненные значения таким же образом группируют в пары и исключают ошибку следующего порядка Всего можно произвести уточнение, на единицу меньше числа сеток. При каждом уточнении вычисляется погрешность (15), дающая апостериорную оценку точности на данном этапе вычислений. Пример такого вычисления будет дан в главе IV.

Замечание 1. Если исходная формула для вычисления имеет симметричный вид, то на равномерной сетке обычно все нечетные члены ряда (17) обращаются в нуль. При этом пользоваться общей формулой (18) можно, но невыгодно, ибо она не учитывает дополнительной информации о нулевых коэффициентах. Следует оставить в сумме (17) только степени и соответственно изменить формулу Ромберга. Аналогично изменяется рекуррентная процедура Рунге: при очередном исключении ошибки порядок точности повышается не на 1, а на 2. Примером может служить данный выше вывод формулы (9) из формулы (8), когда после первого уточнения погрешность уменьшилась с сразу до

Замечание 2. Допустимое число членов суммы (17) связано с количеством существующих у функции непрерывных производных. Поэтому для недостаточно гладких функций бессмысленно брать большое число сеток. Практически даже для «хороших» функций используют не более 3 — 5 сеток; обычно отношение их шагов стараются выбрать равным 2.

Замечание 3. Метод Рунге—Ромберга можно применять только в том случае, если ошибка представима в виде (17), где коэффициенты одинаковы для всех сеток. Строго говоря, при численном дифференцировании эти коэффициенты зависят от положения узлов сетки.

Но если выбранные конфигурации узлов на всех сетках подобны относительно точки (рис. 14, а), то зависимость от узлов одинакова для всех сеток и сводится к величине шага. Тогда метод Рунге — Ромберга применим. Если же правило подобия нарушено (рис. 14, б, в), то метод применять нельзя.

Поэтому при численном дифференцировании метод Рунге—Ромберга удается применять только для нахождения производных в узлах или серединах интервалов равномерных (или описанных далее квазиравномерных) сеток. Но эти случаи являются достаточно важными в практических приложениях. Особенно широко применяется описанный метод при численном интегрировании и разностных методах решения задач для дифференциальных и интегральных уравнений.

Рис. 14.

<< Предыдущий параграф Следующий параграф >>
Оглавление