ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Численные методы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ГЛАВА XII. ЭЛЛИПТИЧЕСКИЕ УРАВНЕНИЯ

Глава XII посвящена методам решения краевых задач для эллиптических уравнений. В § 1 решение таких задач сводится к решению эволюционных задач для параболических уравнений до выхода на стационарный режим; последнее выполняется при помощи многомерных разностных схем, изложенных в гл. XI, § 2. Обсужден выбор оптимального шага по времени (или набора переменных шагов) в таких расчетах.

В § 2 рассмотрены вариационные методы решения эллиптических уравнений и вариационные способы составления стационарных (не эволюционных) разностных схем. В последнем случае указаны прямые и итерационные методы вычисления разностного решения.

§ 1. Счет на установление

1. Стационарные решения эволюционных задач.

К эллипти ческим уравнениям приводит ряд физических задач: определение прогиба нагруженной мембраны, давления газа в неоднородном силовом поле, стационарного (не зависящего от времени) распределения тепла в теле и т. д. Все эти задачи имеют общее свойство: предполагается, что внешние воздействия не зависят от времени, а начальные условия были заданы достаточно давно, так что физическая система успела выйти на стационарное решение , не зависящее от времени.

Примером полной математической постановки является задача с краевыми условиями первого рода, называемая задачей Дирихле; требуется найти непрерывное решение задачи

где есть многомерная замкнутая область с границей Г. В отличие от эволюционных задач, разобранных в предыдущих главах, постановка (1) не содержит начальных условий. Обобщением задачи (1) является следующая задача:

Задачи с другими краевыми условиями мы не будем рассматривать.

Задачу (2) будем называть стационарной. Наряду с ней рассмотрим эволюционную задачу для параболического уравнения с теми же граничными условиями и произвольно выбранными начальными данными:

Исследуем, насколько решение эволюционной задачи отличается от решения стационарной задачи. Вычитая (2) из (3) и учитывая, что найдем, что разность удовлетворяет однородному параболическому уравнению с однородными краевыми условиями:

Поскольку начальные данные в (3) были выбраны произвольно, то без ограничения общности можно считать, что начальные данные задачи (4) также выбраны произвольно.

В курсах математической физики показано (см., например, [40]), что при помощи метода разделения переменных решение задачи (4) можно представить в следующем виде:

Здесь и — собственные функции и собственные значения многомерной задачи Штурма—Лиувилля:

а

являются коэффициентами Фурье начальных данных (4) по системе функций . Собственные значения задачи (6) положительны и образуют неубывающую последовательность

а собственные функции образуют полную ортонормированную систему в .

Из (5) и (7) нетрудно получить неравенство

Оно означает, что разность при экспоненциально стремится к нулю по норме так что решение эволюционной задачи (3) среднеквадратично сходится к решению стационарной задачи (2) при .

Замечание 1. Пусть граничные и начальные условия таковы, что решения задач (2) и (3) имеют в непрерывные производные, ограниченные равномерно по t. Тогда сходимость к будет равномерной.

Таким образом, вместо задачи (2) для эллиптического уравнения можно взять эволюционную задачу (3) для параболического уравнения с тем же пространственным оператором, произ; вольно выбрать начальные данные и вычислить решение при достаточно большом t. Стационарный (не зависящий от времени) предел , к которому стремится при и будет решением стационарной задачи (2).

Этот способ называется счетом на установление. Он позволяет осуществить численное решение эллиптических задач хорошо разработанными методами решения параболических задач, например, продольно-поперечной схемой для двумерных задач и локально-одномерными схемами в случае большего числа измерений.

Установление стационарного решения происходит довольно быстро благодаря экспоненциальному характеру затухания начальных данных. Из (8) видно, что если нужна точность , то надо вести вычисления до момента

где есть наименьшее собственное значение соответствующей задачи Штурма — Лиувилля (6).

Замечание 2. На стационарное решение выходят не только решения параболических задач. То же происходит при других диссипативных процессах со стационарными граничными условиями, например при колебаниях с вязким трением, описываемых уравнением

Можно формулировать эволюционную задачу для этого уравнения; однако это менее удобно.

Замечание 3. Можно составить разностную схему, непосредственно аппроксимирующую исходную задачу (2).

Но мы увидим, что вычислять разностное решение при этом обычно приходится итерационными методами. Оказывается, что соответствующие итерационные алгоритмы можно интерпретировать как некоторые разностные схемы для эволюционной задачи (3).

<< Предыдущий параграф Следующий параграф >>
Оглавление