ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Численные методы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

3. Сравнение величин.

Сначала рассмотрим задачу сравнения величины измеряемой в эксперименте, с константой а. Величину можно определить лишь приближенно, вычисляя среднее по измерениям. Надо узнать, выполняется ли соотношение . В этом случае ставят две задачи, прямую и обратную:

а) по известной величине найти константу а, которую превосходит с заданной вероятностью

б) найти вероятность того, что , где а — заданная константа.

Очевидно, если то вероятность того, что меньше 1/2. Этот случай не представляет интереса, и далее будем считать, что

Задача сводится к задачам, разобранным в п. 2. Пусть по измерениям определены X и его стандарт

Число измерений будем считать не очень малым, так что есть случайная величина с нормальным распределением. Тогда из критерия Стьюдента (9) при учете симметрии нормального распределения следует, что для произвольно выбранной вероятности выполняется условие

Полагая перепишем это выражение в следующем виде:

где — заданные в таблице 23 коэффициенты Стьюдента. Тем самым, прямая задача решена: найдена константа а, которую с вероятностью превышает

Обратная задача решается при помощи прямой. Перепишем формулы (23) следующим образом:

Это значит, что надо вычислить t по известным значениям а, выбрать в таблице 23 строку с данным - и найти по величине t соответствующее значение Оно определяет искомую вероятность

Две случайные величины. Часто требуется установить влияние некоторого фактора на исследуемую величину — например, увеличивает ли (и насколько) прочность металла определенная присадка. Для этого надо измерить прочность исходного металла и прочность легированного металла у и сравнить эти две величины, т. е. найти

Сравниваемые величины являются случайными; так, свойства металла определенной марки меняются от плавки к плавке, поскольку сырье и режим плавки не строго одинаковы. Обозначим эти величины через . Величина исследуемого эффекта равна и требуется определить, выполняется ли условие

Таким образом, задача свелась к сравнению случайной величины с константой а, разобранному выше. Прямая и обратная задачи сравнения в этом случае формулируются следующим образом:

а) по результатам измерений найти константу а, которую превосходит с заданной вероятностью (т. е. оценить величину исследуемого эффекта);

б) определить вероятность того, что где а — желательная величина эффекта; при это означает, чтонадо определить вероятность, с которой

Для решения этих задач надо вычислить z и дисперсию этой величины. Рассмотрим два способа их нахождения.

Независимые измерения. Измерим величину в экспериментах, а величину экспериментах, независимых от первых экспериментов. Вычислим средние значения по обычным формулам:

Эти средние сами являются случайными величинами, причем их стандарты (не путать со стандартами единичных измерений!) приближенно определяются несмещенными оценками:

Поскольку эксперименты независимы, то случайные величины х и у также независимы, так что при вычислении их математические ожидания вычитаются, а дисперсии складываются:

Несколько более точная оценка дисперсии такова:

Таким образом, и ее дисперсия найдены, и дальнейшие вычисления производятся по формулам (23) или (24).

Согласованные измерения. Более высокую точность дает другой способ обработки, когда в каждом из экспериментов одновременно измеряют . Например, после выпуска половины плавки в оставшийся в печи металл добавляют присадку, а затем сравнивают образцы металла из каждой половины плавки.

При этом, по существу, в каждом эксперименте измеряют сразу значение одной случайной величины , которую надо сравнить с константой а. Обработка измерений тогда производится по формулам (21)-(24), где вместо надо всюду подставить z.

Дисперсия при согласованных измерениях будет меньше, чем при независимых, поскольку она обусловлена только частью случайных факторов: те факторы, которые согласованно меняют , не влияют на разброс их разности. Поэтому такой способ позволяет получить более достоверные выводы.

Пример. Любопытной иллюстрацией сравнения величин является определение победителя в тех видах спорта, где судейство ведется «на глазок» — гимнастика, фигурное катание и т. д.

Таблица 24. Судейские оценки в баллах

В таблице 24 приведен протокол соревнований по выездке на Олимпийских играх 1972 г. Видно, что разброс судейских оценок велик, причем ни одну оценку нельзя признать грубо ошибочной и откинуть. На первый взгляд кажется, что достоверность определения победителя невелика.

Рассчитаем, насколько правильно определен победитель, т. е. какова вероятность события . Поскольку оценки обеим всадницам выставлялись одними и теми же судьями, можно воспользоваться способом согласованных измерений. По таблице 24 вычисляем подставляя в формулу (24) эти значения и получим .

Выбирая в таблице 23 строку находим, что этому значению t соответствует Отсюда т. е. с вероятностью 90% золотая медаль присуждена правильно.

Сравнение по способу независимых измерений даст несколько худшую оценку, поскольку оно не использует информацию о том, что оценки выставляли одни и те же судьи.

Сравнение дисперсий. Пусть требуется сравнить две методики эксперимента. Очевидно, точнее та методика, у которой дисперсия единичного измерения меньше (разумеется, если при этом не увеличивается систематическая ошибка). Значит, надо установить, выполняется ли неравенство .

О дисперсиях единичных измерений судят по стандартам выборок

вычисленным соответственно по измерениям. Эти стандарты сами являются случайными величинами. Однако сравнивать их на основании критерия Стьюдента нельзя, поскольку распределение s не гауссово. Нетрудно видеть, что оно является асимметричным: значения невозможны, а сколь угодно большие возможны.

Дисперсии сравнивают по критерию Фишера. Если

то с вероятностью первая дисперсия больше второй. Коэффициенты Фишера для случаев приведены в таблице 25. При малых эти коэффициенты довольно велики; поэтому различие дисперсий можно установить только в том случае, если это различие велико или велико число экспериментов.

Замечание. Критерий Фишера позволяет также найти отношение дисперсий. Если выполнено неравенство

то с вероятностью первая дисперсия в а раз больше второй.

Методы, изложенные в пп. 2 и 3, применимы не только к измерениям непрерывных величин, но и для суждения об очень большой партии объектов (генеральной совокупности) по небольшой случайной выборке из объектов. Эти формулы и критерии применяются в статистике, социологии, выборочной оценке больших партий товара и т. д. В статистике и социологии законы распределения величин нередко сильно отличаются от нормального, и выяснение закона распределения играет там большую роль.

Таблица 25. Коэффициенты Фишера

<< Предыдущий параграф Следующий параграф >>
Оглавление