ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Численные методы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

4. Неявная консервативная схема.

Есть ряд задач, в которых локальная скорость звука в некоторых участках много больше скорости наиболее важных физических процессов. В таких задачах условие Куранта слишком сильно ограничивает шаг и выгоднее использовать абсолютно устойчивые схемы.

Составим неявную схему. Припишем все сеточные величины целым слоям по времени и выберем шаблон, изображенный на рис. 100. Аппроксимируем консервативную систему (53)-(56а) следующими разностными уравнениями:

Это — консервативная схема. Первые два уравнения взяты чисто неявными для хорошего подавления «разболтки» счета. Уравнение энергии симметрично по времени; чисто неявным его брать невыгодно, поскольку при этом точность расчета заметно ухудшается.

Рис. 100.

Вычисление разностного решения здесь существенно сложней, чем для явной схемы (66). Аналогично задачам акустики (§ 1, п. 3, замечание 1) можно показать, что применять метод последовательных приближений для решения всей цепочки уравнений невыгодно: итерации сходятся при выполнении условия что лишает неявную схему всех ее преимуществ.

Поэтому систему (71) линеаризируют и, как в задачах акустики, преобразуют к форме, решаемой прогонкой. Рассмотрим ход решения в случае разных режимов газодинамических течений, для простоты ограничиваясь плоским случаем

Изотермический случай. Если температура вещества постоянна, то давление зависит только от плотности.

При этом уравнение энергии (56) становится излишним, поскольку система (53)-(55) при заданной зависимости полностью определяет решение. Соответственно в численном расчете следует ограничиться уравнениями .

Положим Подставляя это выражение в уравнение (71а) и линеаризируя это уравнение относительно приращений всех величин на новом слое, получим

Из уравнений (71 в) и (716) найдем вариации

Подставляя их в (72), получим для определения линейную систему с трехдиагональной матрицей:

решаемую прогонкой.

Пренебрегая пока вязкостью (т. е. полагая организуем вычисления следующим образом. Выберем в качестве нулевого приближения

Затем определим из уравнений (74) значения а по ним при помощи уравнений (71 в), (716) найдем

Это позволяет вычислить и выполнить следующую итерацию.

Сходимость итерационного процесса (74), (76) исследована в [34]. Этот процесс является ньютоновским; поэтому он сходится, если начальное приближение (75) недалеко отстоит от корня, т. е. если шаг не слишком велик. Это приводит к некоторому ограничению на однако, как показано в [34], такое ограничение несравненно слабее, чем условие Куранта. Имеются примеры успешных численных расчетов задач с тонкими слоями, в которых шаг в раз превышал значение, допускаемое локальным критерием Куранта (69).

Включение вязкости (71г) можно провести двумя способами. В первом способе линеаризация выполняется так, как описано выше, а к давлению добавляется вязкий член, взятый с предыдущей итерации:

Это означает, что вязкость включена в итерационный процесс методом последовательных приближений. Такой способ прост, но ухудшает сходимость итераций: уменьшает скорость сходимости и усиливает ограничение на шаг , хотя не слишком сильно.

Второй способ — полная линеаризация — сложнее, но надежнее. Линеаризируя уравнение (71а), учтем зависимость g не только от , но и непосредственно от v через вязкость (71 г):

При этом вместо (72) и (74) получаются более громоздкие выражения, которые мы не приводим. Однако такой процесс является чисто ньютоновским и хорошо сходится.

Неизотермический случай требует включения в итерационный процесс уравнения энергии (71 д), что часто делают способом двухкруговых итераций (последовательных прогонок).

Сначала считаем энергию (или температуру) известной во всех точках нового слоя. Тогда в каждой точке т. е. применимы формулы изотермического случая (74), (76); по ним проводят первый малый круг итераций.

Когда эти итерации сойдутся, полученные значения подставляют в уравнение энергии (71д). Неизвестными в нем остаются значения ; их можно определить, линеаризируя уравнение (71д) с учетом зависимости

Итерации (79) образуют второй малый круг. На каждой итерации трехточечное уравнение (79) решается прогонкой.

Найденные значения передают в уравнения (74), (76) и снова проводят первый малый круг итераций и т. д. Это взаимное согласование уравнений импульса и энергии составляет большой круг итераций.

Обычно считают нормальным, если малые круги сходятся за 3—5 итераций, а большой круг за 2—3. Большее число итераций указывает на целесообразность уменьшения шага т.

Замечание. Можно провести итерации в один круг, если полностью линеаризировать систему (71), считая . Однако при этом получаются существенно более громоздкие уравнения в вариациях, для решения которых надо применять матричную прогонку (см. дополнение к [30]).

Устойчивость. Методом разделения переменных в линейном приближении можно показать, что схема (71) безусловно устойчива. Таким образом, шаг ограничивает только условие сходимости итераций при решении нелинейной системы (71).

Аппроксимация и сходимость. Схема (71) не симметрична по t и поэтому даже на гладких течениях имеет аппроксимацию . Тем самым, на гладких течениях схема «крест» может оказаться более точной.

Однако при расчете течений с ударными волнами и другими особенностями неявная схема дает существенно лучшие результаты, чем схема «крест». Поэтому она широко применяется в практике вычислений, особенно в «больших задачах».

Сходимость схемы (71) строго не доказана, но многократно проверена на сложных задачах-тестах с известными точными решениями.

<< Предыдущий параграф Следующий параграф >>
Оглавление