1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
Макеты страниц
§ 2. Приближенный анализ1. Понятие близости.Если требуется определить некоторую величину у по известной величине х, то символически задачу можно записать в виде у = А(х). Здесь и у, и х могут быть числами, совокупностью чисел, функцией одного или нескольких переменных, набором функций и т.д. Если оператор А настолько сложен, что решение не удается явно выписать или точно вычислить, то задачу решают приближенно. Например, пусть надо вычислить Но что такое «близко»? Очевидно, для двух чисел Множество элементов а) б) в) г) Последовательность элементов Метрическое пространство называют полным, если любая фундаментальная последовательность его элементов сходится к элементу того же пространства. Примером неполного пространства является множество рациональных чисел Элементами наших множеств будут числа, векторы, матрицы, функции и т. п. Сами множества обычно являются линейными нормированными пространствами, ибо в них определены операции сложения элементов и умножения их на число и введена норма каждого элемента существует единственный элемент
Линейное нормированное пространство есть частный случай метрического пространства, а норма определяется метрикой. Полное линейное нормированное пространство называется банаховым. Практически всегда величины, с которыми мы будем оперировать, являются элементами банаховых пространств; это важно при доказательстве сходимости численных методов. Рассмотрим некоторые примеры банаховых пространств, с которыми нам часто придётся встречаться. Выполнимость аксиом (3) и полноту читатели легко проверят сами. а) Множество всех действительных чисел с нормой б) Пространство С — множество функций Класс непрерывных функций часто еще сужают, накладывая на функции дополнительные требования: липшиц-непрерывности, однократной или многократной дифференцируемости и т. д. Напомним некоторые определения. Функция Если в) Пространство Сходимость в такой норме называют сходимостью в среднем. Пространство Разницу между равномерной близостью и близостью в среднем иллюстрирует Рис. 1. Выбирая метрические пространства, т. е. выбирая множества X, Y и определяя в них метрики, мы тем самым уславливаемся, в каких классах функций можно брать начальные данные и искать решение. Поэтому в конкретной задаче выбор пространств должен в первую очередь определяться физическим смыслом задачи, и лишь во вторую —чисто математическими соображениями (такими, например, как возможность доказать сходимость). Например, при расчете прочности самолета нужна равномерная близость приближенного решения к точному, а близости в среднем недостаточно: перенапряжение в маленьком участке может разрушить конструкцию. А в задаче о нагреве тела потоком тепла даже норма Нетрудно показать, что между разными нормами (если они существуют) выполняются определенные соотношения. Если функции В самом деле, например: Следовательно, из равномерной сходимости вытекает сходимость в среднем, в частности — среднеквадратичная. Поэтому чебышевскую норму называют более сильной, чем гильбертова. г) Координатные бесконечномерные пространства, элементами которых являются счетные множества чисел а само пространствр называют соответственно с или д) Конечномерные пространства №, элементами которых являются группы из Для конечномерных векторов между разными нормами существуют соотношения которые легко проверить. Поэтому из сходимости в одной из этих норм следует сходимость во всех остальных нормах. Нормы, обладающие таким свойством, называют эквивалентными. Отметим, что если последовательность векторов е) В пространстве квадратных матриц порядка где Первые две нормы не имеют специальных названий, третья называется максимальной, четвертая — сферической или евклидовой и пятая — спектральной. Между ними выполняются некоторые соотношения, аналогичные (5). Интересна связь Приведем пример подчиненной нормы. Из цепочки неравенств следует, что Тогда именно сумма по этой строке будет максимальна в левой части (7), и неравенство превратится в равенство. Это означает, что Без доказательства укажем, что
|
Оглавление
|