1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
Макеты страниц
5. Сопряженные направления.Методы наискорейшего спуска или спуска по координатам даже для квадратичной функции требуют бесконечного числа итераций. Однако можно построить такие направления спуска, что для квадратичной функции (где Положительно определенная матрица позволяет ввести норму вектора следующим образом: Нетрудно проверить, что все аксиомы нормы при этом выполнены. Определение (31) означает, что под скалярным произведением двух векторов х и у теперь подразумевается величина называют сопряженными (по отношению к данной матрице А). Ниже мы увидим, что поочередный спуск по сопряженным направлениям особенно выгоден при поиске минимума. На этом основана большая группа методов: сопряженных градиентов, сопряженных направлений, параллельных касательных и другие. Для квадратичной функции они применяются с одинаковым успехом. На произвольные функции наиболее хорошо обобщается метод сопряженных направлений, у которого детали алгоритма тщательно отработаны; этот метод излагается в данном пункте. а) Сначала рассмотрим, как применяется этот метод к квадратичной форме (30). Для этого нам потребуются некоторые свойства сопряженных векторов. Пусть имеется некоторая система попарно сопряженных векторов Докажем, что взаимно сопряженные векторы линейно-независимы. Из равенства Это противоречие доказывает наше утверждение. Значит, система Пусть мы нашли некоторый сопряженный базис Подставляя это выражение в правую часть формулы (30), преобразуем ее с учетом сопряженности базиса (33) к следующему виду: Последняя сумма состоит из членов, каждый из которых соответствует только одной компоненте суммы (34). Это означает, что движение по одному из сопряженных направлений Совершим из точки Поясним геометрический смысл сопряженного базиса. Если осями координат сделать главные оси эллипсоидов уровня квадратичной функции, то один цикл спусков по этим координатам приводит точно в минимум. Если перейти к некоторым аффинным координатам, то функция останется квадратичной, но коэффициенты квадратичной формы изменятся. Можно формально рассмотреть нашу квадратичную функцию с измененными коэффициентами как некоторую новую квадратичную форму в декартовых координатах и найти главные оси ее эллипсоидов. Положение этих главных осей в исходных аффинных координатах будет некоторой системой сопряженных направлений. Разный выбор аффинных координат естественно приводит к разным сопряженным базисам. б) Сопряженный базис можно построить способом параллельных касательных плоскостей. Пусть некоторая прямая параллельна вектору Для этого воспользуемся выражением (35), где в сумме оставим только один член: и положим Пусть на какой-нибудь другой прямой, параллельной первой, функция принимает минимальное значение в точке гг; тогда аналогично найдем Следовательно, направление, соединяющее точки минимума на двух параллельных прямых, сопряжено направлению этих прямых. Таким образом, всегда можно построить вектор, сопряженный произвольному заданному вектору Пусть имеются две параллельные Рассмотрим один цикл процесса построения сопряженного базиса. Пусть уже построен базис, в котором последние Теперь из точки Из точки Если одно из несопряженных направлений в базисе заменить направлением Начнем расчет циклов с произвольного базиса; для него можно считать, что в) Хотя понятие сопряженного базиса определено только для квадратичной функции, описанный выше процесс построен так, что его можно формально применять для произвольной функции. Разумеется, что при этом находить минимум вдоль направления надо методом парабол, не используя нигде формул, связанных с конкретным видом квадратичной функции (30). В малой окрестности минимума приращение достаточно гладкой функции обычно представимо в виде симметричной положительно определенной квадратичной формы типа (18). Если бы это представление было точным, то метод сопряженных направлений сходился бы за конечное число шагов. Но представление приближенно, поэтому число шагов будет бесконечным; зато сходимость этого метода вблизи минимума будет квадратичной. Благодаря квадратичной сходимости метод сопряженных направлений позволяет находить минимум с высокой точностью. Методы с линейной сходимостью обычно определяют экстремальные значения координат менее точно. Замечание 1. Реально даже для квадратичной функции процесс не всегда укладывается в Замечание 2. Теоретически безразлично, какое из несопряженных направлений выкинуть из базиса в конце цикла. Обычно выкидывают то направление, при спуске по которому на данном цикле функция изменилась менее всего. Поскольку для произвольной функции понятие сопряженности ввести нельзя, то направление наиболее слабого убывания выкидывают независимо от того, под каким номером оно стоит в базисе. Любопытно, что это оказывается выгодным даже для квадратичной функции, хотя на основании этого критерия иногда можно выкинуть сопряженное направление, оставив несопряженные; зато уменьшается потеря точности при ортогонализации. Замечание 3. Описанный выше цикл метода включает два спуска по сопряженным направлениям и один — по несопряженным. Более выгоден цикл, при котором сразу после нахождения нового сопряженного направления по нему делают спуск из точки При этом новое направление ставят в базис на последнее место и выкидывают то направление, на котором функция слабее всего уменьшилась при спусках от точки Метод сопряженных направлений является, по-видимому, наиболее эффективным методом спуска. Он неплохо работает и при вырожденном минимуме, и при разрешимых оврагах, и при наличии слабо наклонных участков рельефа — «плато»-, и при большом числе переменных — до двух десятков.
|
Оглавление
|