1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
Макеты страниц
6. Наилучшая схема.Рассмотрим, как следует обобщать схему (6) на уравнение теплопроводности с переменным коэффициентом теплопроводности, которое имеет следующий вид: Случай непрерывных и гладких коэффициентов несложен, и отдельно мы его разбирать не будем. Исследуем более общий случай, когда Разрывы коэффициентов уравнения (31) возникают, например, на границах областей в задачах для слоистых сред или на ударных волнах в движущейся среде. В точках разрыва коэффициентов решение Рис. 80. Для выделения допустимого решения из множества обобщенных решений надо выяснить, какие величины всюду непрерывны, согласно физическому смыслу задачи. Для теплопроводности, как уже отмечалось в главе VIII, § 2, п. 7, непрерывны температура и Заметим, что производные этих величин разрывны; их имеет разрывы в точках разрыва Чтобы получить сходимость к допустимому обобщенному решению, составим методом баланса консервативную разностную схему. Уравнение (31) записано в дивергентной форме, соответствующей закону сохранения энергии. Удобнее заменить его системой уравнений Выберем шаблон и связанную с ним ячейку (рис. 80) и запишем первое уравнение (32) в виде закона сохранения энергии для этой ячейки: Второе уравнение (32) проинтегрируем по интервалу сетки: Справедливость формулы (336) очевидна; если коэффициент Припишем значения температуры узлам сетки, а значения тепловых потоков — серединам интервалов (крестики на рис. 80). Аппроксимируем интегралы в (33) квадратурными формулами. При этом что допустимо в силу непрерывности потока. Получим консервативную разностную схему, называемую наилучшей: где При вычислениях интегралы (34г), (34д) также аппроксимируют несложными квадратурными формулами. Например, если где черта означает, что величина отнесена к моменту времени f. Под узловыми значениями разрывных величин здесь надо понимать соответствующие односторонние пределы. Название схемы (34) связано с ее высокой точностью. Например, можно показать, что для однородного стационарного уравнения (31) наилучшая схема является точной, если интегралы (34г) вычисляются точно. Это означает, что разностное решение Исследуем схему (34). Подставляя (346) в (34а), получим линейную трехточечную (по пространству) схему. Для определения Устойчивость по начальным данным исследуем методом операторных неравенств. Ограничимся случаем задачи Коши на бесконечной прямой, когда Перепишем двуслойную схему (34) в канонической форме: где Введем скалярное произведение Нетрудно убедиться, что операторы А и В неотрицательные и самосопряженные. В самом деле, Сдвигая во второй сумме индекс на единицу, получим Равенство (366) означает, что Пусть выполнено условие Учитывая, что Это означает, что Если выполнено условие то, в силу неравенства (39), условие (40) имеет место. Поэтому неравенство ( Сходимость для своего доказательства требует оценок аппроксимации. Это связано с громоздкими выкладками (см. [30]), поэтому приведем только окончательный результат. Пусть Тогда наилучшая схема (34) при выполнении условия устойчивости (41) равномерно сходится на специальных сетках с точностью Если Монотонность схемы имеет место при достаточно малом шаге по времени: за одним очевидным исключением: чисто неявная схема с Замечание. Коэффициенты разностной схемы вычисляются с некоторыми ошибками, что может привести к искажению решения. Устойчивость разностного решения относительно изменения коэффициентов называется коэффициентной устойчивостью (ко-устойчивостью). Доказано (см. [30]), что наилучшая схема при выполнении условия (41) является ко-устойчивой.
|
Оглавление
|