1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
Макеты страниц
11. Многомерная интерполяция.Двумерные таблицы широко распространены в физике и технике; например, таковыми являются таблицы термодинамических функций газов, где независимыми переменными обычно являются температура и плотность. Трехмерные таблицы составляют и используют значительно реже, но не потому, что таких зависимостей нет, а потому, что таблицы слишком громоздки. Четырехмерных таблиц практически нет, хотя в физике немало задач с большим числом параметров; так, проводимость плазмы Отметим некоторые существенные стороны многомерной интерполяции. Для простоты ограничимся двумерными таблицами 1) Чтобы объем таблиц был приемлем, приходится шаги по аргументам брать довольно большими. Это предъявляет жесткие требования к способу интерполяций. Часто приходится пользоваться методом выравнивания, т. е. подбирать замену переменных Например, законы зависимости давления горячих газов от температуры и плотности В дальнейшем мы будем, предполагать, что выравнивающие переменные уже подобраны, и таблицы составлены в новых переменных. Тогда в качестве интерполирующей функции можно использовать многочлен невысокой степени. 2) Не любое число узлов интерполяции выгодно. Если для одной переменной степень многочлена была взаимно однозначно связана с числом узлов; то для двух переменных многочлен Если число узлов не соответствует этой формуле, то часть коэффициентов при высших степенях должна задаваться принудительно (в частности, нулями); Рис. 7. 3) В многомерном случае иначе определяется понятие экстраполяции. Возьмем узлы интерполяции и соединим их попарно прямыми (в случае большего числа измерений — гиперплоскостями). Крайние отрезки ограничивают выпуклую область (рис. 7). Если искомая точка попадает в эту область, то имеет место интерполяция; если не попадает, то экстраполяция. 4) Не всякое расположение узлов допустимо. В одномерном случае узлы не должны были совпадать. Теперь же для интерполяции многочленом который обращается в нуль, если узлы лежат на одной прямой. При интерполяции многочленом Такие условия, а также условие отсутствия экстраполяции проверять в общем случае сложно. Поэтому для хорошей интерполяции сетка должна быть регулярно построенной, а не представлять собой совокупность беспорядочно расположенных точек; узлы из нее следует выбирать определенным образом. В дальнейшем ограничимся наиболее удобной прямоугольной сеткой (рис. 8, 9); желательно, чтобы она была равномерной. На прямоугольной сетке удобна последовательная интерполяция. Пусть заданы Рис. 8. Рис. 9. Затем проведем лагранжеву интерполяцию по столбцу, т. е. по значениям Последовательная интерполяция имеет ряд преимуществ. Она позволяет брать по каждой переменной свое число узлов. Легко написать ее общую формулу, аналогичную одномерной формуле Лагранжа хотя вычисления удобнее производить, последовательно применяя одномерные формулы Ньютона. Формулу (31) можно обобщить, используя для каждого аргумента свою квазилинейную интерполяцию, т. е. по строкам делая замену Многочлен минимальной степени получается при треугольной интерполяции. Если взять треугольную конфигурацию узлов интерполяции, изображенную на рис. 9 или повернутую на угол, кратный 90°, то число узлов будет равно и т. д. Такими же рассуждениями, как в одномерном случае, можно показать, что интерполяционный многочлен лагранжева типа имеет следующий вид: В одномерном случае переменная у и индексы Многомерная интерполяция настолько громоздка, что обычно используется только многочлен первой или второй степени; читателям предлагается записать формулы (31) — (33) для этих случаев. Многочлены более высоких степеней используются много реже. По той же причине интерполяция эрмитова типа для многих переменных практически не употребляется. Сплайновая интерполяция используется в основном при разностном решении уравнений в частных производных. Иногда мы вынуждены работать с функцией, заданной на нерегулярной сетке (например, с функцией, измеренной экспериментально). Тогда обычно ограничиваются интерполяционным многочленом первой степени; его коэффициенты находят по трем выбранным узлам, приравнивая в них многочлен табличным значениям функции: Вычислять коэффициенты а, b, с на самом деле не нужно. Заметим, что равенства (34) означают, что столбец Раскрывая этот определитель по первому столбцу и вспоминая формулу (30), получим следующее выражение для интерполяционного многочлена: Эту процедуру вывода формулы нетрудно обобщить на многочлен любой степени при произвольном расположении узлов, но сами формулы для многочленов высокой степени получаются громоздкими и неудобными для вычислений.
|
Оглавление
|