1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
Макеты страниц
3. Суммирование рядов Фурье.Нахождение наилучшего приближения приводит к суммированию рядов. Казалось бы, просуммировать ряд нетрудно. Но, во-первых, он далеко не всегда сходится равномерно, даже при наличии сходимости в каждой точке. Так, если Во-вторых, если надо суммировать много членов ряда, то происходит большое накопление погрешности входных данных и даже погрешности округления. Например, ряд Тейлора для Причина состоит в том, что вычисления с заданным количеством цифр эквивалентны внесению погрешности в коэффициенты ряда. Погрешности вносятся и в том случае, если находить коэффициенты по формулам (39) не аналитически, а численно. А бесконечные ряды, вообще говоря, неустойчивы по отношению к погрешности коэффициентов. В самом деле, изменим все коэффициенты, а ряда Фурье на малые величины т. е. при Регуляризация по числу членов. Простейшей регуляризацией является использование небольшого отрезка ряда где верхний предел суммирования есть функция ошибок б отдельных коэффициентов. Чем меньше Оценим оптимальное число членов для Тригонометрического ряда Фурье. Ошибка из-за отбрасывания далеких членов ряда равна а ошибка из-за погрешности коэффициентов составляет При увеличении N на единицу первая ошибка убывает на величину Оптимальной является ситуация, когда скорости изменения этих ошибок равны, т. е. при Ранее отмечалось, что если Регуляризация форм-фактором. Описанный способ напоминает обрезание шумов в радиотехнике. Но подавлять шумы можно и с помощью форм-фактора, лишь ослабляющего высокие частоты. Для этого каждый член ряда (37) делят на соответственно подобранную величину где при малых номерах то сумму обобщенного ряда Фурье следует заменить на Поскольку собственные значения Там же будет рассмотрен выбор параметра регуляризации а; сейчас отметим, что оптимальное Попытки улучшить сходимость тригонометрических рядов Фурье предпринимались давно. В методе Фейера рассматриваются частные суммы ряда Фурье: и составляется функция Эта функция при N со равномерно сходится к у(х), если последняя непрерывна. Скорость сходимости невелика; если ограничиться небольшим числом членов, то все резкие колебания функции будут сильно сглажены. Реально для хорошей передачи одного резкого скачка надо взять около 20 гармоник, а 10 гармоник дают невысокую точность. Более быструю сходимость и меньшее сглаживание функции дает метод На метод Ланцоша похож метод С. Н. Бернштейна, в котором полагают Это обеспечивает равномерную сходимость для любой непрерывной функции Однако последние три метода не слишком точны, и область их применимости узка; поэтому с появлением регуляризации по А. Н. Тихонову их почти перестали употреблять.
|
Оглавление
|