ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Численные методы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

6. Процесс Эйткена.

У всех рассмотренных выше обобщенных формул на равномерных и квазиравномерных сетках ошибку можно разложить в ряд по степеням шага типа (3.17). Значит, к ним ко всем применим метод Рунге. Но для его применения надо знать, каков порядок точности исходной формулы.

Предположим, что порядок точности существует, но неизвестен нам. Оказывается, и в этом случае можно уточнить результат, если расчеты проведены на трех (или более) сетках.

Чтобы упростить алгоритм расчета, выберем три сетки с постоянным отношением шагов, т. е. с шагами Обозначим приближенное значение интеграла на сетке через и ограничимся главным членом погрешности; тогда можно написать

Это система трех уравнений для определения неизвестных . Вводя вспомогательные обозначения преобразуем эту систему к следующему виду:

Перемножая крайние уравнения (23) и сравнивая с квадратом среднего уравнения, получим отсюда легко получить уточненное значение интеграла

Попарно вычитая уравнения (23) друг из друга, получим

или

Следовательно, эффективный порядок точности исходной формулы (22) равен

Описанный алгоритм был предложен Эйткеном в 1937 г. для ускорения сходимости итерационных процессов последовательного приближения, в которых ошибка убывает примерно по геометрической прогрессии (см. главу V, § 2),

Погрешность численного интегрирования при изменении шага в q раз меняется приблизительно в раз; поэтому если сетки последовательно сгущаются в одно и то же число раз, то ошибка убывает именно по требуемому закону.

Замечание. Вычислять уточненное значение следует именнр по формуле (24), не преобразовывая ее. В данной записи из вычитается поправка, в которой числитель и знаменатель имеют одинаковый порядок малости, поэтому заметной потери точности не происходит. Если же привести все члены в формуле к общему знаменателю, то в вычислениях придется удерживать много знаков, чтобы избежать потери точности при округлениях.

Пример. Рассмотрим вычисление интеграла

У подынтегральной функции даже первая производная не ограничена, поэтому все приведенные ранее априорные оценки погрешности неприменимы. Мы не знаем, каков здесь эффективный порядок точности каждой из рассмотренных ранее формул численного интегрирования. Составим таблицу 10 значений функцйи и вычислим интеграл по формулам трапеций и Симпсона при разных шагах (таблица 11).

Таблица 10

Таблица 11

Видно, что обе формулы дают результаты невысокой точности. Плохая точность формулы Симпсона означает, что формула трапеций фактически имеет не второй порядок точности и уточнение методом Рунге здесь бессмысленно. А уточнение первого столбца таблицы процессом Эйткена существенно улучшает результат; попутно выясняется, что в данном примере эффективный порядок точности формулы трапеций

Эффективный порядок точности оказался не целым числом! С этим приходится встречаться, если функция имеет особенность, а формула интегрирования явно этого не учитывает, или если особенность имеет сама формула (это возможно в нелинейных формулах интегрирования, рассмотренных в § 2).

Если никаких особенностей нет, то эффективный порядок точности может только слегка отличаться от теоретического благодаря наличию в погрешности не только главного члена, но и членов более высокого порядка малости. В этом случае при эффективный порядок стремится к теоретическому.

На этом основан быстрый метод контроля программ для ЭВМ. Зададим функцию, не имеющую особенностей, проведем расчеты на сгущающихся сетках и проверим, согласуется ли эффективный порядок точности с теоретическим. Сильное расхождение свидетельствует об ошибке в программе.

<< Предыдущий параграф Следующий параграф >>
Оглавление