ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Численные методы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 3. Кратные интегралы

1. Метод ячеек.

Рассмотрим двукратный интеграл по прямоугольнику . По аналогии с формулой средних можно приближенно заменить функцию на ее значение в центральной точке прямоугольника. Тогда интеграл легко вычисляется:

Рис. 18.

Для повышения точности можно разбить область на прямоугольные ячейки (рис. 18). Приближенно вычисляя интеграл в каждой ячейке по формуле средних и обозначая через соответственно площадь ячейки и координаты ее центра, получим

(43)

Справа стоит интегральная сумма; следовательно, для любой непрерывной она сходится к значению интеграла, когда периметры всех ячеек стремятся к нулю.

Оценим погрешность интегрирования. Формула (42) по самому ее выводу точна для . Но непосредственной подстановкой легко убедиться, что формула точна и для любой линейной функции, т. е. она соответствует аппроксимации поверхности, z = f (х, у) плоскостью. В самом деле, разложим функцию по формуле Тейлора

где , а все производные берутся в центре ячейки. Подставляя это разложение в правую и левую части квадратурной формулы (42) и сравнивая их, аналогично одномерному случаю легко получим выражение погрешности этой формулы

ибо все члены разложения, нечетные относительно центра симметрии ячейки, взаимно уничтожаются.

Пусть в обобщенной квадратурной формуле (43) стороны прямоугольника разбиты соответственно на N и М равных частей. Тогда погрешность интегрирования (45) для единичной ячейки равна

Суммируя это выражение по всем ячейкам, получим погрешность обобщенной формулы

т. е. формула имеет второй порядок точности. При этом, как и для одного измерения, можно применять метод Рунге — Ромберга, но при одном дополнительном ограничении: сетки по каждой переменной сгущаются в одинаковое число раз, т. е. отношение N/M остается постоянным.

Обобщим формулу ячеек на более сложные области.

Легко сообразить, что для линейной функции формула типа (42) будет точна в области произвольной формы, если под S подразумевать площадь области, а под координаты центра тяжести, вычисляемые по обычным формулам

(47)

Разумеется, практическую ценность это имеет только для областей простой формы, где площадь и центр тяжести легко определяются; например, для треугольника, правильного многоугольника, трапеции. Но это значит, что обобщенную формулу (43) можно применять к областям, ограниченным ломаной линией, ибо такую область всегда можно разбить на прямоугольники и треугольники.

Для области с криволинейной границей формулу (43) применяют иным способом. Наложим на область G прямоугольную сетку (рис. 19). Те ячейки сетки, все точки которых принадлежат области, назовем внутренними; если часть точек ячейки принадлежит области, а часть — нет, то назовем ячейку граничной. Площадь внутренней ячейки равна произведению ее сторон. Площадью граничной ячейки будем считать площадь той ее части, которая попадает внутрь G; эту площадь вычислим приближенно, заменяя в пределах данной ячейки истинную границу области на хорду. Эти площади подставим в (43) и вычислим интеграл.

Рис. 19.

Оценим погрешность формулы (43). В каждой внутренней ячейке ошибка составляет по отношению к значению интеграла по данной ячейке. В каждой граничной ячейке относительная ошибка есть ибо центр прямоугольной ячейки не совпадает с центром тяжести входящей в. интеграл части. Но самих граничных ячеек примерно в N раз меньше, чем внутренних. Поэтому при суммировании по ячейкам общая погрешность будет если функция дважды непрерывно дифференцируема, а граница области есть кусочно-гладкая кривая; это означает второй порядок точности.

Вычисление площади граничной ячейки довольно трудоемко, ибо требует определения положения границы внутри ячейки. Можно вычислять интегралы по граничным ячейкам более грубо или вообще не включать их в сумму (43). Погрешность при этом будет и для хорошей точности потребуется более подробная сетка.

Метод ячеек переносится на большее число измерений. Мы видели, что к области произвольной формы его трудно применять; поэтому всегда желательно заменой переменных преобразовать область интегрирования в прямоугольный параллелепипед (это относится практически ко всем методам вычисления кратных интегралов).

<< Предыдущий параграф Следующий параграф >>
Оглавление