1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
Макеты страниц
§ 2. Квазилинейное уравнение1. Сильные и слабые разрывы.Решение линейного уравнения переноса может иметь разрывы только в том случае, если они содержатся в начальных или граничных данных. В квазилинейном уравнении даже при непрерывных и достаточно гладких начальных данных могут возникать разрывы решения. Характер этих разрывов удобно исследовать на простейшем квазилинейном уравнении переноса которым мы и ограничимся в данном параграфе. Оно напоминает линейное уравнение переноса, в котором роль скорости переноса играет величина самого решения Полная постановка задачи при знакопеременной скорости сложна; мы рассмотрим только наиболее важный случай Тогда начальные и граничные значения решения, заданные на положительных полуосях координат Рис. 69. Пер Наклон (тангенс угла наклона) характеристик в каждой точке плоскости Второй случай. Краевые значения монотонны указанным выше образом, но имеют разрывы. Для простоты положим Левее разрыва характеристики на плоскости Проведем обе характеристики из точки разрыва начальных данных; на рисунке они показаны жирными стрелками. Левее левой и правее правой из них через каждую точку плоскости проходит одна и только одна характеристика, т. е. решение определено и единственно. А между ними нет ни одной характеристики и решение не определено. Потребуем корректности задачи, т. е. устойчивости решения относительно бесконечно малых возмущений начальных данных. Это позволит нам доопределить решение. Сгладим разрыв начальных данных, заменив его непрерывным монотонным переходом на бесконечно узком интервале. Тогда в пустом угле появится «веер» характеристик и наклон каждой характеристики определит значение решения на ней (рис. 70, б). Рис. 70. Легко видеть, что доопределенное решение будет иметь следующий вид: Поэтому оно непрерывно на всей плоскости, кроме точки Разрыв производных называют слабым разрывом решения. Слабые разрывы квазилинейного уравнения переноса распространяются по характеристикам, как и в линейном уравнении переноса. Третий случай. Пусть нарушено данное выше условие монотонности. Опять положим В угле, образованном жирными характеристиками, через каждую точку проходят две характеристики, приносящие в нее разные значения функции! Вне этого угла решение однозначно определено, а внутри угла оно неоднозначно. В этом случае непрерывное решение построить не удается. Сглаживание разрыва начальных данных не помогает: ход характеристик на некотором расстоянии от точки Рис. 71. Обобщенное решение удовлетворяет некоторому интегральному уравнению, которое получается из определенной дивергентной формы записи данного дифференциального уравнения. Разные дивергентные формы записи одного и того же уравнения приводят к разным разрывным решениям, хотя гладкие решения для всех дивергентных форм одинаковы. Дивергентная форма, соответствующая физическому закону сохранения, определяет правильное решение (его называют также допустимым). Уравнение (44) не имеет физического смысла, и естественного закона сохранения для него нет. Постулируем такую дивергентную форму: Будем искать решение, имеющее единственный разрыв. Пусть наклон линии разрыва соответствует скорости D, т. е. разрыв бежит, как волна. По поведению характеристик видно (рис. 72), что искомое решение имеет вид Проинтегрировав (46) по площади прямоугольника со сторонами Отсюда скорость распространения разрыва равна Разрыв самого решения называют сильным разрывом (а в газодинамике — ударной волной). Сильный разрыв квазилинейного уравнения распространяется не по характеристике. В теории квазилинейных уравнений доказывается, что только такое обобщенное решение устойчиво относительно малых возмущений начальных данных. Четвертый случай, когда функция Рис. 72. Рис. 73. Существенно, что здесь при непрерывных и гладких начальных данных с течением времени возникают сильные разрывы решения. Число разрывов со временем тоже может измениться. Замечание 1. Если вместо (46) мы постулируем другой закон сохранения, например: то скорость ударной волны изменится. Но для слабых ударных волн, на которых решение мало меняется, скорость ударной волны будет отличаться от (48) в т. е. изменится очень мало. Замечание 2. Разрывные решения линейных уравнений можно рассматривать как предел последовательности непрерывных и гладких решений. Для квазилинейных уравнений это сделать не удается.
|
Оглавление
|