1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
Макеты страниц
5. Консервативные схемы.Ложной сходимости можно избежать, используя консервативные схемы. Эти схемы составляют методом баланса, исходя из физических законов сохранения и соблюдая дополнительное правило, описанное ниже. Сначала разберем законы сохранения на примере уравнения (44). Запишем ту дивергентную форму этого уравнения (46), которая в п. 1 была условно принята за правильную: Выбирая отдельную ячейку сетки (рис. 74) и интегрируя по ней уравнение (63), получим точное интегральное соотношение
Уравнение (63) можно проинтегрировать не по отдельной ячейке, а по всей области и получить аналогичное интегральное соотношение: Это соотношение напоминает физические законы сохранения: первый интеграл дает изменение Очевидно, соотношение (64) является законом сохранения для каждой отдельной ячейки; оно содержит потоки и другие величины на границах этой ячейки. Просуммируем (64) по всем ячейкам области G: Легко видеть, что интегралы по тем границам ячеек, которые лежат внутри G, попарно уничтожаются; остаются только интегралы по наружной границе, и (66) совпадает с (65). Иными словами, закон сохранения во всей области есть точное следствие закона сохранения в отдельных ячейках. Не всякая разностная схема обладает таким свойством. Например, возьмем схему с ложной сходимостью (59), умножим обе части на Преобразуем второе слагаемое в квадратных скобках: Тогда (67) легко привести к следующему виду: где Первая и вторая суммы в (68) являются разностными аналогами интегралов в (65); они не содержат значений Поэтому при расчете по схеме (59) разностный закон сохранения во всей области G нарушается на величину А. Такие схемы называют неконсервативными, а величину А называют дисбалансом схемы. Построим консервативную схему, т. е. такую, у которой дисбаланс равен нулю. Для этого в интегральном соотношении (64) аппроксимируем интегралы линейными квадратурными формулами. Если, для определенности, воспользоваться формулой прямоугольников с теми же узлами, что в предыдущей схеме, то получим явную схему следующего вида: Рис. 75. Суммирование (70) по всем ячейкам дает именно две первые суммы в (68), и дисбаланса не возникает. Выбирая другие шаблоны, можно построить различные консервативные схемы для уравнения (44). Например, если вычислить интегралы в (64) по шаблону рис. 75, то получим неявную схему Это — схема бегущего счета, и для выполнения вычислений ее удобно переписать в следующем виде: здесь из двух корней квадратного уравнения (71а) согласно условию и Вторая сумма немного отличается от второй суммы (68), но это отличие несущественно. Дисбаланс отсутствует, так что схема (71) консервативна. Схема (71) любопытна во многих отношениях. Она является схемой сквозного счета; хотя ее сходимость строго не доказана, она успешно используется для расчета сильных разрывов даже в отсутствие псевдовязкости (по-видимому, это связано с наличием достаточно большой аппроксимационной вязкости схемы). Схема монотонна. Есть обобщения этой схемы, сохраняющие все ее хорошие свойства и существенно повышающие точность расчета [70]. Интерес к таким схемам объясняется тем, что многие изложенные здесь идеи удается перенести на случай газодинамики и других сложных и важных задач. Консервативные схемы выражают закон сохранения на сетке, т. е. они качественно похожи на исходное интегральное уравнение. Неконсервативные схемы этим свойством не обладают. Поэтому, по сравнению с неконсервативными схемами, консервативные схемы обычно приводят к существенному улучшению точности расчета как разрывных, так и гладких решений. Построены схемы, одновременно удовлетворяющие большому числу различных физических законов сохранения (см. [34]). Эти схемы, названные полностью консервативными, оказались полезными в задачах магнитной газодинамики, физики разреженной плазмы и ряде других. Таким образом, понятие консервативности широко используется при составлении и исследовании разностных схем. Заметим, однако, что различные полезные свойства схем (консервативность, монотонность, высокий порядок аппроксимации) нередко противоречат друг другу, так что может не существовать схемы, одновременно удовлетворяющей всем этим требованиям. Кроме того, не для всех классов уравнений консервативность является необходимым условием сходимости, и составлено немало хороших, хотя и неконсервативных схем.
|
Оглавление
|