ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Численные методы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

3. Наискорейший спуск.

Спускаться можно не только параллельно осям координат. Вдоль любой прямой функция зависит только от одной переменной, и минимум на этой прямой находится описанными в § 1 методами.

Наиболее известным является метод наискорейшего спуска, когда выбирается , т. е. направление, в котором функция быстрее всего убывает при бесконечно малом движении из данной точки. Спуск по этому направлению до минимума определяет новое приближение . В этой точке снова определяется градиент и делается следующий спуск.

Однако этот метод значительно сложнее спуска по координатам, ибо требуется вычислять производные и градиент (это нередко делают конечно-разностными методами) и переходить к другим переменным. К тому же, по сходимости наискорейший спуск не лучше спуска по координатам. При попадании траектории в истинный овраг спуск прекращается, а в разрешимом овраге сильно замедляется.

Если функция является положительно определенной квадратичной функцией

то формулы наискорейшего спуска приобретают несложный вид. Вдоль прямой функция (22) квадратично зависит от параметра

(23)

Из уравнения легко находим ее минимум

дающий нам следующую точку спуска:

Направление наискорейшего спуска определяется градиентом квадратичной функции (22):

Подставляя это значение в формулы (24)-(25), получим окончательные выражения для вычисления последовательных спусков.

Если воспользоваться разложением всех движений по базису, состоящему из собственных векторов матрицы А, то можно доказать, что для квадратичной функции метод наискорейшего спуска линейно сходится, причем

здесь собственные значения положительно определенной матрицы А (они вещественны и положительны). Если что соответствует сильно вытянутым эллипсам — линиям уровня, то и сходимость может быть очень медленной. Есть такие начальные приближения (рис. 39), когда точно реализуется наихудшая возможная оценка, т. е. в (27) имеет место равенство.

Рис. 39.

Причины нетрудно понять. Во-первых, в данной точке любую прямую, в том числе невыгодную для спуска, можно сделать правлением градиента, если специально подобрать изменение масштабов по осям. Во-вторых, каждый спуск кончается в точке, где его направление касается линии (поверхности) уровня. Градиент перпендикулярен поверхности уровня. Следовательно, в методе наискорейшего спуска каждый спуск перпендикулярен предыдущему. В двумерном случае это означает, что мы совершаем спуск по координатам, повернутым так, что одна ось параллельна градиенту в начальной точке.

Для улучшения метода наискорейшего спуска предлагают «кухонные» поправки к алгоритму — например, совершают по каждому направлению спуск не точно до минимума. Наиболее любопытным представляется такое видоизменение алгоритма. Будем делать по направлению, противоположному градиенту, только бесконечно малый шаг и после него вновь уточнять направление спуска. Это приводит к движению по кривой являющейся решением системы обыкновенных дифференциальных уравнений:

Вдоль этой кривой т. е. функция убывает, и мы движемся к минимуму при

Уравнение (28) моделирует безынерционное движение материальной точки вниз по линии градиента. Можно построить и другие уравнения — например, дифференциальное уравнение второго порядка, моделирующее движение точки при наличии вязкого трения.

Однако от идеи метода еще далеко до надежного алгоритма. Фактически систему дифференциальных уравнений (28) надо численно интегрировать (см. главу VIII). Если интегрировать с большим шагом, то численное решение будет заметно отклоняться от линии градиента. А при интегрировании малым шагом сильно возрастает объем расчетов. Кроме того, если рельеф имеет извилистые овраги, то трудно ожидать хорошей сходимости этого метода.

Алгоритмы наискорейшего спуска и всех его видоизменений сейчас недостаточно отработаны. Поэтому метод наискорейшего спуска для сложных нелинейных задач с большим числом переменных редко применяется, но в частных случаях он может оказаться полезным.

<< Предыдущий параграф Следующий параграф >>
Оглавление