ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Численные методы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

5. Прогонка.

Пусть матрица А содержит много нулевых элементов, расположенных в матрице не беспорядочно, а плотными массивами на заранее известных местах. Тогда расчет по методу Гаусса можно организовать так, чтобы не включать эти элементы. Тем самым объем вычислений и требуемая память уменьшаются, зачастую очень сильно.

На рис. 25 приведены структуры матриц, которые нередко встречаются в задачах физики и техники и допускают такое ускорение расчета; горизонтальными линиями изображены положения ненулевых элементов, окаймлены границы массивов нулевых и ненулевых элементов. К таким матрицам относятся ленточные ящичные (в), квазитреугольные (д), почти треугольные (е) и многие другие.

Можно показать, что при обходе нулевых элементов решение системы с почти треугольной матрицей требует всего действий, а с ленточной — даже , где — ширина ленты, т. е. выигрыш во времени счета очень велик.

Выбор наибольшего элемента в таких расчетах делать нельзя, ибо перестановка столбцов разрушает специальную структуру матрицы. В матрицах с симметричной структурой недопустим даже выбор главного элемента.

Рис. 25.

Но обычно в этом нет необходимости, поскольку подобные физические задачи приводят, как правило, к хорошо обусловленным матрицам с большими элементами на главной диагонали, для которых ошибки округления в методе Гаусса невелики.

Наиболее важным частным случаем метода Гаусса является метод прогонки, применяемый к системам с трехдиагональной матрицей (они часто встречаются при решениях краевых задач для дифференциальных уравнений второго порядка). Такие системы обычно записывают в каноническом виде

Формула (10) называется разностным уравнением второго порядка, или трехточечным уравнением. В этом случае прямой ход (без выбора главного элемента) сводится к исключению элементов . Получается треугольная система, содержащая в каждом уравнении только два неизвестных, Поэтому формулы обратного хода имеют следующий вид:

Уменьшим в формуле (11) индекс на единицу и подставим в уравнение (10):

Выражая отсюда через , получим

Чтобы это выражение совпало с (11), надо, чтобы стоящие в его правой части дроби были равны соответственно Отсюда получим удобную запись формул прямого хода

Попутно можно найти определитель трехдиагональной матрицы

(13)

Вычисления по формулам прогонки требуют всего ячеек памяти и арифметических действий, т. е. они гораздо экономнее общих формул метода исключения.

В формулах прямого и обратного хода начало счета «замаскировано»: для начала (развязки) расчета формально требуется задать величины которые неизвестны. Однако перед этими величинами в формулах стоят множители или равные нулю. Это позволяет начать вычисления, полагая, например,

Покажем, что если выполнено условие преобладания диагональных элементов

(причем хотя бы для одного i имеет место неравенство), то в формулах прямого хода (12) не возникает деления на нуль, и тем самым исходная система (10) имеет единственное решение. Для этого предположим, что при некотором значении индекса. Тогда легко проверяется цепочка неравенств

Поскольку можно положить отсюда по индукции следует значит, что и требовалось доказать. При выполнении условия (14) формулы прогонки не только безавостны, но и устойчивы относительно ошибок округления и позволяют успешно решать системы уравнений с несколькими сотнями неизвестных.

Условие (14) является достаточным, но не необходимым условием устойчивости прогонки. Конечно, можно построить примеры неустойчивости при несоблюдении этого условия. Но в практических расчетах для хорошо обусловленных систем типа (10) прогонка часто оказывается достаточно устойчивой даже при нарушении условия преобладания диагональных элементов.

Заметим, что к линейным системам с трехдиагональной матрицей обычно приводят трехточечные разностные схемы для дифференциальных уравнений второго порядка (глава VIII, § 2).

<< Предыдущий параграф Следующий параграф >>
Оглавление