1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
Макеты страниц
9. Специальные методы.Из всех численных методов интегрирования обыкновенных дифференциальных уравнений, рассчитанных на произвольные уравнения (точнее, на классы уравнений, у которых правые части имеют определенное число непрерывных и ограниченных производных), наилучшие результаты и при расчетах на ЭВМ, и при ручных расчетах дают методы Рунге — Кутта. Поэтому, приступая к решению какой-либо конкретной задачи Коши, обычно пробуют решить ее одной из описанных в п. 6 схем. Но выше отмечалось, что встречаются задачи с быстропеременными решениями, когда все схемы Рунге — Кутта для получения удовлетворительной точности требуют неприемлемо малого шага. Характерным примером такой задачи является система уравнений химической кинетики. Сначала разберем задачу химического распада одного вещества здесь и — концентрация вещества, t — время, а — скорость распада, которую считаем зависящей от t и и (ибо она зависит от температуры, а температура определяется выделением тепла при реакции и внешними условиями охлаждения). Запишем для уравнения (34) схему ломаных (15) По смыслу задачи, концентрация вещества должна быть положительной. Но если скорость распада настолько велика, что хотя бы в одной точке Для одного уравнения (34) эта трудность несущественна: если скорость распада Для подобных задач приходится использовать специальные методы, разработанные именно для данных узких классов уравнений; для других классов уравнений эти методы обычно оказываются непригодными. Способы построения специальных методов основаны на изучении и использовании свойств общих решений исследуемого класса уравнений. Рассмотрим некоторые способы. Большинство способов основано на том, что для исходного уравнения и Для нахождения приближенных решений можно применить метод Пикара или другие аналогичные методы. Нередко удается добиться успеха, слегка упрощая правую часть исходного уравнения. Например, если в задаче (34) положить Первый способ построения специальных схем удобен для знакопеременных решений (например, быстро осциллирующих). В нем рассматривается разность здесь Второй способ выгоден для знакопостоянных решений (например, растущих по экспоненциальному или степенному закону). В нем рассматривается отношение где Пример. Если для уравнения распада (34) воспользоваться приближенным решением при слабо меняющейся Третий способ заключается в том, что вспомогательное уравнение рассматривается не на большом промежутке изменения аргумента, а на одном шаге сетки Пример. Рассмотрим уравнение, возникающее в задачах так называемой дифференциальной прогонки: Если положить Оно интегрируется в элементарных функциях Это соотношение явно разрешается, давая такую специальную схему: Если можно считать Схемы (39а) и (396) дают неплохие результаты даже в тех случаях, когда условие устойчивости прогонки нарушено, а точное решение задачи (38) имеет полюсы. При использовании третьего способа обычно удается построить схемы первого или второго порядка точности, но с малым остаточным членом (точнее, мала по величине комбинация производных, входящая множителем в остаточный член); схемы более высокого порядка точности построить этим путем трудно. Первый и второй способы позволяют использовать схемы Рунге—Кутта высокого порядка точности, но остаточный член при этом будет не очень мал, ибо решения Упомянем четвертый способ, заключающийся в построении так называемых точных разностных схем, которым точно удовлетворяет решение исходной задачи. Коэффициенты таких схем обычно являются функционалами от коэффициентов исходного уравнения (и могут зависеть также от искомого решения). Но техника построения точных схем более сложна, и мы их не будем рассматривать, отсылая читателя к монографии [30].
|
Оглавление
|