1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
Макеты страниц
4. Численные методы.Задачи для нелинейных уравнений с коэффициентами достаточно общего вида или даже линейные задачи, но в областях сложной формы, редко удается решить классическими методами. Основным способом решения таких задач являются численные методы. Среди них чаще всего применяют разностные методы благодаря их универсальности и наличию хорошо разработанной теории. Для применения разностного метода в области изменения переменных G(r, t) вводят некоторую сетку. Все производные, входящие в уравнение и краевые условия, заменяют разностями (или другими алгебраическими комбинациями) значений функции и Как и в главе VIII, возникают вопросы: существует ли решение алгебраической системы и единственно ли оно; как это решение фактическивычислить (за возможно меньшее число действий); при каких условиях это разностное решение стремится к точному и какова скорость сходимости? Есть еще два вопроса, которые для обыкновенных дифференциальных уравнений были несложными: как выбрать сетку и как составить разностную схему на этой сетке? Пример. Составим простейшие разностные схемы для одномерной задачи линейной теплопроводности на ограниченном отрезке Решение ищется в области Введем в G прямоугольную сетку (для простоты равномерную), образованную пересечением линий Рис. 46. Рис. 47. Возьмем около узла Число уравнений (16) меньше числа Конфигурацию узлов, используемую для составления разностной схемы, называют шаблоном. Для одной и той же задачи можно составить много разностных схем. Например, если для задачи (15) выбрать изображенный на рис. 47, б шаблон, то вместо 16) получим другую схему: Начальные и граничные условия для этой схемы можно записать в форме (17). В этой, главе рассмотрены способы составления и исследования разностных схем, применимые для разных типов задач. В следующих главах излагаются те разностные схемы, которые дают хорошие результаты при решении некоторых распространенных типов уравнений математической физики, возникающих в задачах переноса, теплопроводности и диффузии, акустики и газодинамики, стационарных электрических полей. Есть численные методы, близкие к разностным. Например, в методе прямых сетка вводится только для части переменных; эти переменные рассматриваются как дискретные, а одна переменная (обычно время t) остается непрерывной. Производные по дискретным переменным заменяются разностями. При этом уравнение в частных производных аппроксимируется дифференциально-разностными уравнениями, которые представляют собой систему большого числа обыкновенных дифференциальных уравнений. Метод прямых оказывается в некоторых случаях удобным. Для некоторых важных классов задач развиты специальные численные методы, обычно основанные на каких-либо грубых физических моделях процессов. Так, для задач многомерной газодинамики разработан метод частиц в ячейке; для задач разреженной плазмы предложен метод «водяного мешка» и ряд других (см. [6]); в задачах переноса нейтронов комбинируют разностный метод с разложением угловой части функции распределения частиц по сферическим гармоникам и т. д. Численные методы позволяют решить сложнейшие задачи для систем многомерных уравнений. Однако для сложных задач численные методы очень трудоемки и рассчитаны на использование мощных ЭВМ. В этих случаях даже вывод разностной схемы, составление программы и ее отладка могут занимать несколько месяцев, а разработка математической модели или новых типов разностных схем нередко требует нескольких лет. Поэтому численные методы целесообразно использовать в сочетании с аналитическими методами. Например, ищут такие упрощенные постановки задачи или частные случаи, когда можно найти точные или автомодельные решения и преобразования подобия. При помощи преобразования подобия по каждому найденному численному решению строят семейство решений. Все это позволяет с меньшими затратами труда провести детальное исследование исходной задачи,
|
Оглавление
|