1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
Макеты страниц
2. Спуск по координатам.Казалось бы, для нахождения минимума достаточно решить систему уравнений типа (17) методом линеаризации или простых итераций и отбросить те решения, которые являются седловинамц или максимумами.Однако в реальных задачах минимизации эти методы обычно сходятся в настолько малой окрестности минимума, что выбрать подходящее нулевое приближение далеко не всегда удается. Проще и эффективнее провести спуск по координатам. Изложим этот метод на примере функции трех переменных Выберем нулевое приближение Рис. 38. Затем из новой точки сделаем спуск по направлению, параллельному оси у, т. е. рассмотрим Будем повторять циклы. На каждом спуске функция не возрастает, и при этом значения функции ограничены снизу ее значением в минимуме Это зависит от функции и выбора нулевого приближения. На примере функции двух переменных легко убедиться, что существуют случаи сходимости спуска по координатам к искомому минимуму и случаи, когда этот спуск к минимуму не сходится. В самом деле, рассмотрим геометрическую трактовку спуска по координатам (рис. 38). Будем двигаться по выбранному направлению, т. е. по некоторой прямой в плоскости х, у. В тех участках, где прямая пересекает линии уровня, мы при движении переходим от одной линии уровня к другой, так что при этом движении функция меняется (возрастает или убывает, в зависимости от направления движения). Только в той точке, где данная прямая касается линии уровня (рис. 38, а), функция имеет экстремум вдоль этого направления. Найдя такую точку, мы завершаем в ней спуск по первому направлению, и должны начать спуск по второму направлению (поскольку направления мы сейчас выбираем параллельно координатным осям, то второе направление перпендикулярно первому). Пусть линии уровня образуют истинный овраг. Тогда возможен случай (рис. 38, б), когда спуск по одной координате приводит нас на «дно» оврага, а любое движение по следующей координате (пунктирная линия) ведет нас на подъем. Никакой дальнейший спуск по координатам невозможен, хотя минимум еще не достигнут; процесс спуска по координатам в данном случае не сходится к минимуму. Наоборот, если функция достаточно гладкая, то в некоторой окрестности минимума процесс спуска по координатам сходится к этому минимуму. Пусть функция имеет непрерывные вторые производные, а ее минимум не вырожден. Для простоты опять рассмотрим функцию двух переменных Докажем, что тогда спуск по координатам из данного нулевого приближения сходится к минимуму, причем линейно. Значения функции вдоль траектории спуска не возрастают; поэтому траектория не может выйти из области G, и неравенства (21) будут выполняться на всех шагах. Рассмотрим один из циклов, начинающийся в точке А (рис. 38, а). Предыдущий цикл окончился поиском минимума по направлению у, следовательно, где через Аналогичные рассуждения дают соотношение Следовательно, за один цикл Значит, когда число циклов Первые производные одновременно обращаются в нуль в точке минимума и вблизи него являются линейными однородными функциями приращений координат. Поэтому координаты точек спуска линейно стремятся к координатам точки минимума, т. е. в данном случае спуск по координатам сходится, причем линейно. Случай (21) заведомо реализуется в достаточно малой окрестности невырожденного минимума, ибо эти условия эквивалентны требованию положительной определенности квадратичной формы (18). Таким образом, вблизи невырожденного минимума достаточно гладкой функции спуск по координатам линейно сходится к минимуму. В частности, для квадратичной функции этот метод сходится при любом нулевом приближении. Фактическая скорость сходимости будет неплохой при малых q, когда линии уровня близки к эллипсам, оси которых параллельны осям координат. Для эллипсов, сильно вытянутых под значительным углом к осям координат, величина Если сходимость медленная, но траектория уже попала в близкую окрестность минимума, то итерации можно уточнять процессом Эйткена; разумеется, при этом надо брать в качестве исходных значения не на трех последних спусках, а на трех циклах спусков (т. е. не точки А, В, С, а точки В, D и третья точка, которой нет на рис. 38, а). Разрешимый овраг напоминает сильно вытянутую котловину (см. рис. 38, б). При попадании траектории спуска в такой овраг сходимость становится настолько медленной, что расчет практически невозможно вести. Отметим, что в стохастических задачах наличие ошибок эквивалентно превращению истинных оврагов и гребней в разрешимые; расчет при этом можно продолжать, хотя практическая ценность такого расчета невелика: сходимость очень медленная. Метод спуска по координатам несложен и легко программируется на ЭВМ. Но сходится он медленно, а при наличии оврагов — очень плохо. Поэтому его используют в качестве первой попытки при нахождении минимума. Пример. Рассмотрим квадратичную функцию Уточнение по Эйткену дает
|
Оглавление
|