1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
Макеты страниц
2. Оптимальный шаг.Для расчета эволюционной Однако если шаг Для простоты ограничимся двумерной задачей Дирихле в прямоугольнике: Ей соответствует эволюционная задача для уравнения
которую будем решать на равномерной сетке Продольно-поперечная схема. Для исследования этой схемы возьмем ее запись (11.63) в двуслойной форме: и преобразуем ее к канонической форме: где Поскольку в уравнении (12) коэффициент теплопроводности Если численный расчет доведен до выхода на стационарное решение, то Тогда схема (13) в пределе переходит в неэволюционную (не содержащую времени) разностную схему которая, как нетрудно заметить, аппроксимирует стационарную задачу (11). Очевидно, в этом случае оптимальным будет тот шаг Затухание начальных данных можно исследовать методом разделения переменных, взятым в строгой форме (поскольку нас интересуют точные значения границ спектра оператора). Собственные функции разностного оператора — ( Рис. 86. Подставляя их в схему (13) и полагая Очевидно, все Какие гармоники затухают наиболее медленно и, тем самым, сильнее всего препятствуют выходу на стационарный режим? Нетрудно заметить, что входящий в и представить экстремальные множители (при Аналогично, второй сомножитель Чем больше шаг Если изменить шаг по сравнению с Число шагов Поэтому минимально необходимое число шагов есть Сравнивая время счета на установление (9) и величину оптимального шага (19), нетрудно убедиться, что Отметим, что при В дифференциальном уравнении (12) установление происходит за достаточно большой промежуток времени. Почему же не взять для разностной схемы очень большой шаг по времени, если устойчивость это позволяет? Казалось бы, тогда мы быстрей добьемся установления. Но это не так. Спектр дифференциального оператора таков, что гармоники затухают тем быстрей, чем больше их номер, причем Локально-одномерная схема (11.69) с полусуммой по времени в двумерном случае может быть записана в виде где операторы Преобразуем ее к канонической форме: Видно, что левая часть (23) совпадает с левой частью продольнопоперечной схемы (13). Поэтому шаг Нетрудно понять, как обобщить выражения оптимального шага (19) и минимального числа шагов (21) на случай произвольного числа измерений для локально-одномерной схемы с полусуммой. Запишем эти выражения в простейшем случае, когда задача Дирихле поставлена в Однако если положить Замечание. Для улучшения точности приравняем Это линейное уравнение с трехдиагональной матрицей; оно легко решается одномерной прогонкой по направлению Произвольная область. Выбрать оптимальный шаг удается только в простейших задачах, когда точно известны границы спектра разностного оператора. В областях сложной формы мы можем, подставляя в формулу (19) характерные размеры области и число узлов сетки, определить лишь порядок величины При Рис. 87. Отсюда нетрудно получить, что
Аналогично находим Кривая Критерии установления. Из сказанного выше следует, что для задач в достаточно общей постановке (2), (3) заранее неизвестно, какое число шагов надо сделать до установления. Поэтому на практике вычисления прекращают при выполнении какого-нибудь правдоподобного, хотя и нестрогого критерия. Нередко пользуются простейшим критерием однако он недостаточно надежен, поскольку разностное решение устанавливается медленно. Если учесть, что установление происходит почти по геометрической прогрессии, то нетрудно получить более надежный критерий: Для схемы типа (13) расчет иногда оканчивают по условию малости невязки: Комплексная организация расчета, описанная в гл. VIII, § 2, п. 5, очень полезна даже в одномерных задачах. С увеличением числа измерений ее эффективность быстро возрастает. Напомним ее. В области
|
Оглавление
|