ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Численные методы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

2. Метод исключения Гаусса.

Как известно из курса линейной алгебры, решение системы линейных уравнений можно выразить по правилу Крамера через отношение определителей. Но этот способ неудобен для вычислений, ибо определитель найти не проще, чем непосредственно решить исходную систему

или короче

Далее мы увидим, что решить эту систему можно примерно за арифметических действий. Но даже если использовать для вычисления определителей наиболее быстрый метод, описанный в , то для нахождения всех требуемых по правилу Крамера определителей надо действий! Таким образом, формула Крамера удобна для теоретического исследования свойств решения, но очень невыгодна для его численного нахождения.

Начнем исследование системы (1) с частного случая, когда численное решение находится особенно просто. Пусть матрица системы треугольная, т. е. все элементы ниже главной диагонали равны нулю. Тогда из последнего уравнения сразу определяем . Подставляя его в предпоследнее уравнение, находим х, и т. д. Общие формулы имеют вид

если

Метод Гаусса для произвольной системы основан на приведении матрицы системы к треугольной. Вычтем из второго уравнения системы (1) первое, умноженное на такое число, чтобы уничтожился коэффициент при Затем таким же образом вычтем первое уравнение из третьего, четвертого и т. д. Тогда исключатся все коэффициенты первого столбца, лежащие ниже главной диагонали.

Затем при помощи второго уравнения исключим из третьего, четвертого и т. д. уравнений коэффициенты второго столбца. Последовательно продолжая этот процесс, исключим из матрицы все коэффициенты, лежащие ниже главной диагонали.

Запишем общие формулы процесса. Пусть проведено исключение коэффициентов из столбца.

Тогда остались такие уравнения с ненулевыми элементами ниже главной диагонали:

Умножим k-ю строку на число

и вычтем из строки. Первый ненулевой элемент этой строки обратится в нуль, а остальные изменятся по формулам

Производя вычисления по этим формулам при всех указанных индексах, исключим элементы столбца. Будем называть такое исключение циклом процесса. Выполнение всех циклов называется прямым ходом исключения.

Запишем треугольную систему, получающуюся после выполнения всех циклов. При приведении системы к треугольному виду освободятся клетки в нижней половине матрицы системы (1). На освободившиеся места матрицы поставим множители их следует запоминать, ибо они потребуются при обращении матрицы или уточнении решения. Получим

Треугольная система (6) легко решается обратным ходом по формулам (2), в которых всем коэффициентам надо приписать вверху (в скобках) индекс строки.

Сделаем несколько замечаний. Исключение по формулам нельзя проводить, если в ходе, расчета на главной диагонали оказался нулевой элемент . Но в первом столбце промежуточной системы (3) все элементы не могут быть нулями: это означало бы, что Перестановкой строк можно переместить ненулевой элемент на главную диагональ и продолжить расчет.

Если элемент на главной диагонали мал, то эта строка умножается на большие числа что приводит к значительным ошибкам округления при вычитаниях. Чтобы избежать этого, каждый цикл всегда начинают с перестановки строк. Среди элементов столбца находят главный, т. е. наибольший по модулю в столбце, и перестановкой строк переводят его на главную диагональ, после чего делают исключения. В методе Гаусса с выбором главного элемента погрешность округления обычно невелика. Только для плохо обусловленных систем устойчивость этого метода оказывается недостаточной.

Погрешность округления можно еще уменьшить, если выбирать в каждом цикле элемент максимальный по модулю во всей матрице. Однако точность при этом возрастает не сильно по сравнению со случаем выбора главного элемента, а расчет заметно усложняется, ибо требуется перестановка не только строк, но и столбцов. Этот способ невыгоден для ЭВМ и применяется только при расчетах с небольшим количеством знаков на клавишных машинах.

Для контроля расчета полезно найти невязки.

(7)

Если они велики, то это означает грубую ошибку в расчете (ошибка в программе, сбой ЭВМ). Если они малы, а система хорошо обусловлена, то решение найдено достаточно аккуратно. Правда, для плохо обусловленных систем малость невязок не гарантирует хорошей точности решения.

Метод Гаусса с выбором главного элемента надежен, прост и наиболее выгоден для линейных систем общего вида с плотно заполненной матрицей. Он требует примерно ячеек в оперативной памяти ЭВМ, так что на БЭСМ-4 можно решать системы до 60 порядка. При вычислениях производится арифметических действий; из них половина сложений, половина умножений и делений.

<< Предыдущий параграф Следующий параграф >>
Оглавление