ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Численные методы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

2. Разыгрывание случайной величины.

Из всех случайных величин проще всего разыгрывать (моделировать) равномерно распределенную величину . Рассмотрим, как это делается.

Возьмем какое-то устройство, на выходе которого с вероятностью могут появляться цифры 0 или 1; появление той или другой цифры должно быть случайным. Таким устройством может быть бросаемая монета, игральная кость (четно — 0, нечетно — 1) или специальный генератор, основанный на подсчете числа радиоактивных распадов или всплесков радиошума за определенное время (четно или нечетно).

Запишем у как двоичную дробь и на место последовательных разрядов будем ставить цифры, выдаваемые генератором: например, . Поскольку в первом разряде с равной вероятностью могут стоять 0 или 1, это число с равной вероятностью лежит в левой или правой половине отрезка . Поскольку во втором разряде тоже 0 и 1 равновероятны, число с равной вероятностью лежит в каждой половине этих половин и т. д. Значит, двоичная дробь со случайными цифрами действительно с равной вероятностью принимает любое значение на отрезке

Строго говоря, разыграть можно только конечное количество разрядов k. Поэтому распределение будет не вполне требуемым; математическое ожидание окажется меньше 1/2 на величину (ибо значение возможно, а значение невозможно). Чтобы этот фактор не сказывался, следует брать многоразрядные числа; правда, в методе статистических испытаний точность ответа обычно не бывает выше 0,1% —103, а условие дает что на современных ЭВМ перевыполнено с большим запасом.

Псевдослучайные числа. Реальные генераторы случайных чисел не свободны от систематических ошибок: несимметричность монеты, дрейф нуля и т. д. Поэтому качество выдаваемых ими чисел проверяют специальными тестами. Простейший тест — вычисление для каждого разряда частоты появления нуля; если частота заметно отлична от 1/2, то имеется систематическая ошибка, а если она слишком близка к 1/2, то числа не случайные — есть какая-то закономерность. Более сложные тесты — это вычисление коэффициентов корреляции последовательных чисел

или групп разрядов внутри числа; эти коэффициенты должны быть близкими к нулю.

Если какая-то последовательность чисел удовлетворяет этим тестам, то ее можно использовать в расчетах по методу статистических испытаний, не интересуясь ее происхождением.

Разработаны алгоритмы построения таких последовательностей; символически их записывают рекуррентными формулами

Такие числа называют псевдослучайными и вычисляют на ЭВМ. Это обычно удобнее, чем использование специальных генераторов. Но для каждого алгоритма есть свое предельное число членов последовательности, которое можно использовать в расчетах; при большем числе членов теряется случайный характер чисел, например — обнаруживается периодичность.

Первый алгоритм получения псевдослучайных чисел был предложен Нейманом. Возьмем число из цифр (для определенности десятичных) и возведем его в квадрат. У квадрата оставим средних цифр, откинув последних и (или ) первых. Полученное число снова возведем в квадрат и т. д. Значения получаются умножением этих чисел на Например, положим и выберем начальное число 46; тогда получим

Но распределение чисел Неймана недостаточно равномерно (преобладают значения что хорошо видно на приведенном примере), и сейчас их редко употребляют.

Наиболее употребителен сейчас несложный и неплохой алгоритм, связанный с выделением дробной части произведения

где А — очень большая константа (фигурная скобка обозначает дробную часть числа). Качество псевдослучайных чисел сильно зависит от выбора величины А: это число в двоичной записи должно иметь достаточно «случайный» хотя его последний разряд следует брать единицей. Величина слабо влияет на качество последовательности, но было отмечено, что некоторые значения оказываются неудачными.

При помощи экспериментов и теоретического анализа исследованы и рекомендуются такие значения: для БЭСМ-4; для БЭСМ-6. Для некоторых американских ЭВМ рекомендуются и эти цифры связаны с количеством разрядов в мантиссе и порядке числа, поэтому для каждого типа ЭВМ они свои.

Замечание 1. В принципе формулы типа (54) могут давать очень длинные хорошие последовательности, если записывать их в нерекуррентном виде и все умножения выполнять без округления. Обычное округление на ЭВМ ухудшает качество псевдослучайных чисел, но тем не менее до членов последовательности обычно годятся.

Замечание 2. Качество последовательности улучшается, если ввести в алгоритм (54) небольшие случайные возмущения; например, после нормализации числа полезно засылать в последние двоичные разряды его мантиссы двоичный порядок числа

Строго говоря, закономерность псевдослучайных чисел должна быть незаметна по отношению к требуемому частному применению. Поэтому в несложных или удачно сформулированных задачах можно использовать последовательности не очень хорошего качества, но при этом необходимы специальные проверки.

Произвольное распределение. Для разыгрывания случайной величины с неравномерным распределением можно воспользоваться формулой (52). Разыграем у и определим из равенства

Если интеграл берется в конечном виде и формула несложна, то это наиболее удобный способ. Для некоторых важных распределений — Гаусса, Пуассона — соответствующие интегралы не берутся и разработаны специальные способы разыгрывания.

<< Предыдущий параграф Следующий параграф >>
Оглавление