ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Численные методы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

3. Уравнения высокого порядка

Или системы большого числа уравнений имеют соответствующее число краевых условий, и способы задания этих условий достаточно разнообразны. Поэтому к таким задачам применять метод стрельбы много труднее, чем к простейшей задаче (50).

Рассмотрим тот (сравнительно несложный) случай, когда для системы уравнений

дополнительные условия заданы только на концах отрезка и имеют следующий вид:

Для определенности, будем полагать

Выберем за исходный тот конец отрезка , где задана большая часть краевых условий; в нашем случае это будет левый конец . В качестве пристрелочных параметров возьмем каких-то функций из полного набора, например,

Если подставить эти значения в левые краевые условия (606), то эти условия образуют систему алгебраических уравнений относительно начальных значений остальных функций; решая эту систему, найдем

Рассмотрим задачу Коши для системы уравнений (60а) с начальными условиями (61а, б). Решение этой задачи, которое можно найти численным интегрированием, удовлетворяет левому краевому условию (606) и зависит от параметров

Подстановка этого решения в правые краевые условия (60в) определяет вспомогательные функции параметров

те значения параметров, которые удовлетворяют системе алгебраических уравнений

определяют искомое решение краевой задачи (60).

Напомним, что решение системы алгебраических уравнений высокого порядка само по себе является нелегкой задачей. Здесь оно осложняется тем, что вычисление функций очень трудоемко, ибо требует численного интегрирования системы дифференциальных уравнений. Явный вид этих функций неизвестен, так что преобразовать систему (626) к эквивалентной форме и применять метод последовательных приближений затруднительно. А если мы захотим, как в п. 2, построить аналог метода Ньютона, то для вычисления матрицы производных надо будет дополнительно записать и численно интегрировать систему дифференциальных уравнений.

Отсюда видно, что «пристрелка» большого числа параметров очень сложна. Поэтому для нелинейных задач метод стрельбы употребляют в основном тогда, когда Такие постановки краевых задач нередко встречаются в системах большого числа уравнений.

Линейные, уравнения. В этом случае метод стрельбы сильно упрощается и позволяет легко решать задачи при любом числе параметров . В самом деле, функции будут линейными, т. е. они однозначно определяются по своим значениям в точке . Значит, выполнив интегрирование задачи Коши (60а), (61) с разными наборами параметров, можно найти искомый набор параметров Тогда интегрирование даст решение краевой задачи (60).

Вычисления при этом удобно вести следующим образом. Сначала возьмем некоторый набор параметров и обозначим полученные значения функций (62а) через . Затем изменим первый параметр на величину т. е. возьмем набор и обозначим полученные значения функций через . Затем возьмем набор и т. д. Выполнив полный цикл вычислений, можно записать каждую функцию в виде многомерного интерполяционного многочлена Ньютона первой степени (2.33):

Приравнивая эти функции нулю, получим систему линейных алгебраических уравнений для определения искомых параметров

Заметим, что можно уменьшить на единицу число интегрирований системы линейных дифференциальных уравнений, если воспользоваться приемом, описанным в п. 2; но при большом значении это лишь незначительно сокращает общий объем вычислений, а организацию расчета усложняет.

<< Предыдущий параграф Следующий параграф >>
Оглавление