Главная > Математика > Численные методы
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ГЛАВА VII. ПОИСК МИНИМУМА

В главе VII рассмотрены способы нахождения такого значения аргумента, которое минимизирует некоторую зависящую от него скалярную величину. В § 1 изложена задача о минимуме функции одного переменного, лежащая в основе всех более сложных задач. В § 2 рассмотрена задача о минимуме функции многих переменных в неограниченной области. В § 3 область изменения переменных ограничена; наряду с общим случаем рассмотрена частная задача линейного программирования, важная в приложениях к зкономике. В § 4 разобрана задача о минимизации функционала, когда аргумент сам является функцией одного или нескольких переменных.

§ 1. Минимум функции одного переменного

1. Постановка задачи.

Пусть имеется некоторое множество X, состоящее из элементов принадлежащих какому-нибудь метрическому пространству, и на нем определена скалярная функция Говорят, что имеет локальный минимум на элементе если существует некоторая конечная -окрестность этого элемента, в которой выполняется

У функции может быть много локальных минимумов. Если же выполняется

то говорят о достижении функцией абсолютного минимума на данном множестве X.

Естественно требовать, чтобы функция была непрерывной или, по крайней мере, кусочно-непрерывной, а множество X было компактно и замкнуто (в частности, если X само является пространством, то это пространство должно быть банаховым).

Если эти требования не соблюдены, то вряд ли возможно построить разумный алгоритм нахождения решения. Например, если не является кусочно-непрерывной, то единственным способом решения задачи является перебор всех элементов на которых задана функция; этот способ нельзя считать приемлемым. Чем более жестким требованиям удовлетворяет (таким, как существование непрерывных производных различного порядка), тем легче построить хорошие численные алгоритмы.

Перечислим наиболее важные примеры, множеств, на которых приходится решать задачу нахождения минимума. Если множество X является числовой осью, то (1) или (2) есть задача на минимум функции одного вещественного переменного. Если X есть -мерное векторное пространство, то мы имеем дело с задачей на минимум функции переменных. Если X есть пространство функций , то (1) называют задачей на минимум функционала.

Для нахождения абсолютного минимума есть только один способ: найти все локальные минимумы, сравнить их и выбрать наименьшее значение. Поэтому задача (2) сводится к задаче (1), и мы будем в основном заниматься задачей поиска локальных минимумов.

Известно, что решение задачи (1) удовлетворяет уравнению

Если множество X есть числовая ось, то написанная здесь производная является обычной производной, и тогда уравнение (3) есть просто одно (нелинейное) уравнение с одним неизвестным. Для -мерного векторного пространства соотношение (3) оказывается системой нелинейных уравнений . Для пространства функций уравнение (3) является дифференциальным или интегро-дифференциальным. В принципе такие уравнения можно решать численными методами, описанными в главах V и XIV. Однако эти уравнения нередко имеют сложный вид, так что итерационные методы их решения могут очень плохо сходиться или вообще не сходиться. Поэтому в данной главе мы рассмотрим численные методы, применимые непосредственно к задаче (1), без приведения ее к форме (3).

Пусть X является некоторым множеством, принадлежащим какому-то пространству. Тогда (1) называют задачей на минимум в ограниченной области. В частности, если множество X выделено из пространства с помощью ограничивающих условий типа равенств, то задачу (1) называют задачей на условный экстремум; такие задачи методом неопределенных множителей Лагранжа часто можно свести к задачам на безусловный экстремум.

Однако при численном решении обычно удобнее иметь дело непосредственно с исходной задачей (1), хотя при ее решении в ограниченной области возникают свои трудности.

Функция может иметь на множестве X более одного локального минимума. В конкретных прикладных задачах далеко не всегда удается заранее исследовать свойства функции. Поэтому желательно, чтобы численный алгоритм позволял определить число минимумов и их расположение и аккуратно найти абсолютный минимум.

Задачу называют детерминированной, если погрешностью вычисления (или экспериментального определения) функции можно пренебречь. В противном случае задачу называют стохастической. Мы будем рассматривать в основном детерминированные задачи.

Для решения стохастических задач есть специальные методы, но они очень медленные, и применять их к детерминированным задачам невыгодно.

Рис. 36.

<< Предыдущий параграф Следующий параграф >>
Оглавление