ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Численные методы
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ГЛАВА VII. ПОИСК МИНИМУМА

В главе VII рассмотрены способы нахождения такого значения аргумента, которое минимизирует некоторую зависящую от него скалярную величину. В § 1 изложена задача о минимуме функции одного переменного, лежащая в основе всех более сложных задач. В § 2 рассмотрена задача о минимуме функции многих переменных в неограниченной области. В § 3 область изменения переменных ограничена; наряду с общим случаем рассмотрена частная задача линейного программирования, важная в приложениях к зкономике. В § 4 разобрана задача о минимизации функционала, когда аргумент сам является функцией одного или нескольких переменных.

§ 1. Минимум функции одного переменного

1. Постановка задачи.

Пусть имеется некоторое множество X, состоящее из элементов принадлежащих какому-нибудь метрическому пространству, и на нем определена скалярная функция Говорят, что имеет локальный минимум на элементе если существует некоторая конечная -окрестность этого элемента, в которой выполняется

У функции может быть много локальных минимумов. Если же выполняется

то говорят о достижении функцией абсолютного минимума на данном множестве X.

Естественно требовать, чтобы функция была непрерывной или, по крайней мере, кусочно-непрерывной, а множество X было компактно и замкнуто (в частности, если X само является пространством, то это пространство должно быть банаховым).

Если эти требования не соблюдены, то вряд ли возможно построить разумный алгоритм нахождения решения. Например, если не является кусочно-непрерывной, то единственным способом решения задачи является перебор всех элементов на которых задана функция; этот способ нельзя считать приемлемым. Чем более жестким требованиям удовлетворяет (таким, как существование непрерывных производных различного порядка), тем легче построить хорошие численные алгоритмы.

Перечислим наиболее важные примеры, множеств, на которых приходится решать задачу нахождения минимума. Если множество X является числовой осью, то (1) или (2) есть задача на минимум функции одного вещественного переменного. Если X есть -мерное векторное пространство, то мы имеем дело с задачей на минимум функции переменных. Если X есть пространство функций , то (1) называют задачей на минимум функционала.

Для нахождения абсолютного минимума есть только один способ: найти все локальные минимумы, сравнить их и выбрать наименьшее значение. Поэтому задача (2) сводится к задаче (1), и мы будем в основном заниматься задачей поиска локальных минимумов.

Известно, что решение задачи (1) удовлетворяет уравнению

Если множество X есть числовая ось, то написанная здесь производная является обычной производной, и тогда уравнение (3) есть просто одно (нелинейное) уравнение с одним неизвестным. Для -мерного векторного пространства соотношение (3) оказывается системой нелинейных уравнений . Для пространства функций уравнение (3) является дифференциальным или интегро-дифференциальным. В принципе такие уравнения можно решать численными методами, описанными в главах V и XIV. Однако эти уравнения нередко имеют сложный вид, так что итерационные методы их решения могут очень плохо сходиться или вообще не сходиться. Поэтому в данной главе мы рассмотрим численные методы, применимые непосредственно к задаче (1), без приведения ее к форме (3).

Пусть X является некоторым множеством, принадлежащим какому-то пространству. Тогда (1) называют задачей на минимум в ограниченной области. В частности, если множество X выделено из пространства с помощью ограничивающих условий типа равенств, то задачу (1) называют задачей на условный экстремум; такие задачи методом неопределенных множителей Лагранжа часто можно свести к задачам на безусловный экстремум.

Однако при численном решении обычно удобнее иметь дело непосредственно с исходной задачей (1), хотя при ее решении в ограниченной области возникают свои трудности.

Функция может иметь на множестве X более одного локального минимума. В конкретных прикладных задачах далеко не всегда удается заранее исследовать свойства функции. Поэтому желательно, чтобы численный алгоритм позволял определить число минимумов и их расположение и аккуратно найти абсолютный минимум.

Задачу называют детерминированной, если погрешностью вычисления (или экспериментального определения) функции можно пренебречь. В противном случае задачу называют стохастической. Мы будем рассматривать в основном детерминированные задачи.

Для решения стохастических задач есть специальные методы, но они очень медленные, и применять их к детерминированным задачам невыгодно.

Рис. 36.

<< Предыдущий параграф Следующий параграф >>
Оглавление