1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
Макеты страниц
5. Кратные интегралы.Второй способ легко обобщается на многомерные интегралы Рис. 22. Напомним, что чем больше число измерений, тем более жесткими тестами надо проверять качество случайных или псевдослучайных чисел, используемых в расчете. Замечание 1. Для функций произвольного вида можно получить при том же числе узлов точность в несколько раз более высокую; если использовать не случайные точки, а отрезки так называемых Замечание 2. Для гладких функций можно получить более хорошие результаты при несложном построении сетки, если выбрать число узлов Дисперсия этого метода есть Первый способ. Дисперсия второго способа велика, и обычно первый способ статистического вычисления интегралов точнее. Пусть Как найти случайную трехмерную точку с заданным распределением плотности по тройке равномерно распределенных случайных чисел Для разыгрывания координаты Очевидно, функция Теперь одна координата разыграна. Надо найти плотность распределения по второй координате при фиксированной первой координате и произвольной третьей. Если первую координату фиксировать, а по третьей проинтегрировать, то полученное выражение не удовлетворяет условию нормировки (интеграл по у не равен 1). Нормируя его, получим искомую плотность Вторая координата разыгрывается по формуле Плотность распределения по третьей координате при фиксированных первых двух координатах пропорциональна тогда интеграл по z равен единице. Соответственно формула разыгрывания имеет вид Подставляя полученные координаты в (59), вычислим искомый интеграл. Все, что говорилось в п. 3 о точности расчета, полностью относится к многомерному случаю. Нелегко подобрать такой вид плотности Какими методами удобнее вычислять интегралы — сеточными или статистическими? Точность метода статистических испытаний невелика, и для однократных интегралов он явно невыгоден. Для многих измерений положение резко меняется. Пусть функция При интегрировании методом статистических испытаний погрешность Очевидно, если число измерений В многомерном случае редко можно рассчитывать наилучший . порядок точности, чем 6. Другие задачи. Методы статистических испытаний применяют не только - к численному интегрированию, а и во многих других случаях: задачи массового обслуживания, нахождение критических параметров ядерного реактора, расчет защиты от излучения и т. д. Например, рассмотрим расчет надежности сложной конструкции, состоящей из многих элементов. Каждый элемент обычно испытывают на изготовляющем его заводе и снимают так называемую кривую отказов (рис. 23, а); это вероятность выхода элемента из строя после t часов работы. Чтобы снять такую кривую, надо заставить большую партию элементов работать до поломки. Ясно, что испытывать так готовую конструкцию слишком дорого. Рассмотрим конструкцию, состоящую из четырех элементов, причем поломка любого элемента выводит конструкцию из строя. Самый ненадежный элемент мы дублируем так, что после, поломки элемента включается дублер (рис. 23, б). Тогда конструкция сломается, если сломаются оба третьих элемента или любой другой. Если время жизни отдельного элемента есть t, то время жизни конструкции равно Проведем математическое испытание конструкции. Разыграем выход каждого элемента из строя при помощи равномерно распределенных случайных чисел Рис. 23. Время жизни второго элемента определим по числу Повторяя такое испытание много раз можно найти среднее время работы конструкции и построить ее кривую отказов. Если надо испытать слегка измененную конструкцию, это можно сделать по той же программе, изменив в ней только формулу (60).
|
Оглавление
|