ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Лекции по алгебре
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

2. Разложение полинома по степеням линейного двучлена.

Пусть — данный линейный двучлен.

Предложение 19. Полином, f может быть разложен по степеням

Доказательство. Проведем индукцию по степени с тривиальной базой полиномов нулевой степени. Разделим f на с с остатком. Получим

где — остаток, полином степени . В силу индуктивного предположения

откуда

Приведенное доказательство дает и процесс для вычисления коэффициентов. Свободный член разложения дается как остаток от деления f на . Рассуждение по индукции заменяет единообразный процесс, так что есть остаток при делении неполного частного на и вычисление последующих коэффициентов требует вычисления неполного частного при делении на . Далее, находится как остаток при делении на и т. д. Итак, нужно делить на полином f и последующие неполные частные. Остатки дадут коэффициенты разложения, начиная со свободного члена. Деление целесообразно выполнять, пользуясь схемой Хорнера, рассмотренной на стр. 58.

Пример. Разложим полином по степеням Согласно схеме Хорнера запишем:

Остатки подчеркнуты. Таким образом,

В случае поля нулевой характеристики можно дать удобную для теоретических рассуждений формулу для коэффициентов разложения.

Выведем эту формулу.

Пусть (нам удобно записать по возрастающим степеням

Возьмем производные до порядка включительно (дальнейшие все равны нулю):

Положим во всех этих равенствах . Получим ,

откуда

и разложение принимает вид

Эта формула называется формулой Тейлора.

Для приближенного вычисления корней полинома бывает нужно вычислять при значении с, близком к корню. Ясно, что выполнить это проще всего при помощи схемы Хорнера, вычислив по этой схеме два коэффициента разложения f по степеням

Пример. Для полинома вычислить Применяем схему Хорнера:

Итак, f

<< Предыдущий параграф Следующий параграф >>
Оглавление