ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Лекции по алгебре
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

§ 2. Теория определителей

С линейными задачами, использующими теорию матриц, связан аппарат так называемых определителей, очень ценный по широте приложений к теоретическим вопросам.

1. Наводящие соображения.

Рассмотрим в общем виде систему двух линейных уравнений с двумя неизвестными

Допустим, что система имеет решение и пара х, у составляет решение, так что оба уравнения уже обратились в верные равенства. Умножим обе части первого равенства на второго на и вычтем. Получим

Теперь первое равенство умножим на второе на , и сложим. Получим

Предположим, что . Тогда

Таким образом, предположив, что решение существует, мы смогли его найти. Теперь перед нами альтернатива — либо решение существует и тогда оно дается формулами (2), либо решение не существует. Для того чтобы отделаться от второй возможности, нужно только установить, что формулы (2) действительно дают решение системы, для чего следует подставить х и у из (2) в систему (1). Сделаем это:

Мы видим, что оба уравнения превратились в верные равенства.

Если а то наши рассуждения не приводят к законченному результату, и мы оставим этот случай пока в стороне.

В формулах (2) знаменатель один и тот же. Числители же очень похожи по форме записи на знаменатель.

Для выражения существует специальное название

определителя матрицы и специальное обозначение:

С помощью обозначений для определителей формулы (2) за писываются в виде

Применяя, например, эти формулы к решению системы

получим

Разумеется, понятие определителя было бы не нужным, если бы шла речь только о системах двух уравнений с двумя неизвестными. Результат может быть обобщен на линейные системы уравнений с неизвестными.

Рассмотрим еще случай Пусть дана система

Исключим сразу неизвестные у и . С этой целью умножим первое уравнение на второе на третье на и сложим. Получим

Ясно, что коэффициенты при у и z равны нулю.

Коэффициент при играет здесь такую же роль, как для систем второго порядка. Он называется определителем матрицы и обозначается:

В этих обозначениях, если определитель не равен нулю,

Аналогично,

Наш вывод имеет смысл при предположении, что решение существует. Однако, если подставить найденные выражения для х, у, z в исходную систему, можно убедиться в том, что все три уравнения обратятся в верные равенства.

Итак, мы показали, что формулы для решения в общем виде линейных систем уравнений при и имеют сходную структуру и основную роль в них играют определители второго порядка

и третьего порядка

Оба эти выражения представляют собой алгебраические суммы произведений элементов матриц, причем эти произведения составляются по одному элементу из каждой строки и по одному из каждого столбца. Все такие произведения входят в состав определителя. Произведения снабжаются знаками + и — по правилам

На этих рисунках соединены линиями элементы матрицы, составляющие произведения, входящие в определитель со знаками

Обратимся теперь к обобщению определителя для квадратных матриц любого порядка , исходя из формы этих выражений для

Здесь удобно обозначать элементы матрицы одной буквой, приписывая ей два индекса — номер строки и номер столбца. Дадим формальное определение определителя для квадратной матрицы порядка следующим образом:

Определителем квадратной матрицы порядка (или определителем порядка ) называется алгебраическая сумма всевозможных произведений элементов матрицы, взятых по одному из каждой строки, по одному из каждого столбца и снабженных знаками «плюс» и «минус» по некоторому определенному правилу.

К вопросу о том, что это за правило, мы обратимся в ближайшее время, а пока попытаемся записать символически сформулированное выше определение. В каждом слагаемом определителя мы будем записывать сомножители в порядке следования строк. Номера столбцов будут составлять в совокупности все числа от 1 до , в различных порядках, причем во всех возможных порядках, так как определитель, согласно данному определению, составлен из всех произведений элементов, взятых по одному из каждой строки и по одному из каждого столбца. В буквенных обозначениях:

Здесь индексы пробегают все возможные перестановки чисел . Все перестановки должны быть разбиты на два класса так, чтобы одному классу соответствовали слагаемые со знаком «плюс», другому — со знаком «минус».

<< Предыдущий параграф Следующий параграф >>
Оглавление