ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Лекции по алгебре
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
<< Предыдущий параграф Следующий параграф >>
Научная библиотека

Научная библиотека

избранных естественно-научных изданий

Научная библиотека служит для получения быстрого и удобного доступа к информации естественно-научных изданий, получивших широкое распространение в России и за рубежом. На сайте впервые широкой публике представлены некоторые авторские издания написанные ведущими учеными страны.

Во избежании нарушения авторского права, материал библиотеки доступен по паролю ограниченному кругу студентов и преподавателей вузов. Исключение составляют авторские издания, на которые имеются разрешения публикации в открытой печати.

Математика

Физика

Методы обработки сигналов

Схемотехника

Астрономия

Разное

Макеты страниц

3. Наибольший общий делитель.

Пусть а и b — два целых числа, из которых по крайней мере одно отлично от нуля. Наибольшим общим делителем чисел а и b называется наибольшее натуральное число d, являющееся делителем как для а, так и для b.

Например, наибольший общий делитель чисел —6 и 10 равен 2, наибольший общий делитель чисел —6 и 0 есть 6, наибольший общий делитель чисел —6 и 5 равен 1.

Наибольший общий делитель чисел а и b обозначается или просто последнее обозначение применяется только в случае, если в том же контексте символ не используется в каком-либо другом смысле (например, координаты точки на плоскости или скалярное произведение векторов а и b и т. д.).

Важное свойство наибольшего общего делителя сформулировано в следующей теореме.

Теорема 4. Пусть а, b — целые числа, одно из которых отлично от 0, и пусть наибольший общий делитель. Тогда (1) существуют целые числа такие, что ; (2) если d — какой-либо общий делитель чисел а и b, то d делится на

Доказательство. Рассмотрим бесконечное множество М целых чисел, состоящее из чисел , где u и v независимо друг от друга пробегают все целые числа: не

Множество М содержит число а, оно получается при содержит b (при содержит 0 (при и бесконечно много других целых чисел.

Установим, что если два числа и у принадлежат М и , то остаток при делении х на у тоже принадежит М. Действительно, значит, что . При некоторых целых Пусть так что есть остаток при делении на . Тогда Числа целые, следовательно,

Выберем теперь в множестве М наименьшее положительное число d. Покажем, что а и b делятся на d. Пусть — остаток при делении а на d. Так как а и d принадлежат М, то, в силу только сказанного, принадлежит М. Но — наименьшее положительное число, содержащееся в М.

Следовательно, не может быть положительным числом, так что . Это значит, что а делится на d. Те же соображения приводят к выводу, что b делится на d. Таким образом, d есть общий делитель а и b. Далее, так как существуют целые такие», что . Пусть теперь d — какой-либо общий делитель для а и b. Из равенства заключаем, что d делится на ибо оба слагаемых правой части равенства делятся на d. Поэтому так что d есть наибольший общий делитель. По ходу рассуждения оказались доказанными оба утверждения теоремы.

<< Предыдущий параграф Следующий параграф >>
Оглавление