ЕГЭ и ОГЭ
Хочу знать
Главная > Математика > Алгебра и теория чисел
<< Предыдущий параграф
Следующий параграф >>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 2. СВОЙСТВА СЛОЖЕНИЯ И УМНОЖЕНИЯ НАТУРАЛЬНЫХ ЧИСЕЛ

Свойства сложения.

Сложение натуральных чисел удовлетворяет следующим условиям (аксиомам):

IV. Для каждого из

V. Для любых из

Эти условия дают возможность для любого фиксированного натурального числа вычислить значение суммы последовательно для значений , равных Следовательно, эти условия позволяют найти значение суммы для любых натуральных чисел тип.

Например, пусть Используя условия III, IV и V, можно выписать следующую цепочку равенств:

таким образом,

ТЕОРЕМА 2.1. Сложение натуральных чисел ассоциативно, т. е. для любых натуральных а, b, с

Доказательство. Зафиксируем произвольные натуральные числа а и b. Тогда формула (1) определяет предикат от одной свободной переменной с, обозначим его . Доказательство проводится индукцией по натуральной переменной с.

Базис индукции: А(0) истинно, поскольку верно равенство

Индукционный шаг. Предположим, что для некоторого натурального истинно , т. е. верна формула

и докажем, что тогда истинно , т. е. верна формула

В самом деле,

Согласно принципу индукции, предикат истинен для любого натурального с. Поскольку при доказательстве фиксировались произвольные а и , то формула (1) верна для любых натуральных а и b.

ОПРЕДЕЛЕНИЕ. Алгебра называется аддитивным моноидом натуральных чисел.

ЛЕММА 2.2. Для любых натуральных а и b

Доказательство. Проведем доказательство индукцией по b. Зафиксируем произвольное натуральное число а.

Обозначим через предикат, определяемый формулой (1). Условимся в этой лемме и в дальнейшем в аналогичных случаях говорить, что является и обозначением соответствующей формулы.

Легко видеть, что верна формула

Предположим, что для некоторого натурального числа верна формула

и покажем, что верна формула . В самом деле,

(по аксиоме IV);

(по индуктивному предположению);

(по аксиоме IV).

Согласно принципу индукции, формула верна для любого натурального b. Так как при доказательстве фиксировалось произвольное значение а, то формула (1) верна для любых натуральных а и b.

ТЕОРЕМА 2.3. Сложение натуральных чисел коммутативно, т. е. для любых натуральных а, b

Доказательство проводится индукцией по b. Докажем сначала, что верна формула

Проведем индукцию по о.. Очевидно, формула верна при Далее, если для некоторого натурального числа

то

Следовательно, по принципу индукции, формула А (0) верна для любого а.

Зафиксируем произвольное а. Обозначим через А(b) предикат, определяемый формулой (1). Предположим, что для некоторого натурального числа верна формула

тогда

(по аксиоме IV);

(по индуктивному предположению);

(по аксиоме IV);

(по лемме 2.2),

т. е. верна формула . Согласно принципу индукции, формула верна для любого 6. Поскольку фиксировалось произвольное значение а, то формула (I) верна для любых натуральных а и 6.

ТЕОРЕМА 2.4 (ЗАКОН СОКРАЩЕНИЯ ДЛЯ СЛОЖЕНИЯ). Для любых натуральных а, b, с

Доказательство (проводится индукцией по с; при этом фиксируются произвольные значения а и b). Рассмотрим формулу

Так как , то верно, что

т. е. верна формула А(0).

Предположим, что для некоторого натурального числа

и покажем, что тогда верна формула По аксиоме IV,

Далее, по аксиоме II,

Из того, что и (3) — верные формулы, следует, что верна формула

На основании (2) и (4) заключаем, что верна формула

Согласно принципу индукции, формула А(с) верна для любого натурального с. Так как а и b фиксировались произвольно, утверждение (1) верно для любых натуральных а, b, с.

СЛЕДСТВИЕ 2.5. Для любых натуральных а и b, если то

ТЕОРЕМА 2.6. Для любого натурального числа а либо либо существует такое натуральное число b, что

Доказательство. Рассмотрим формулу

Доказательство этой формулы проводится индукцией по а. Очевидно, формула верна при Предположим, что для некоторого натурального числа верна формула

Надо показать, что верна формула

Эта формула действительно верна, так как второй член дизъюнкции — истинная формула (при ). Согласно принципу индукции, формула верна для любого натурального а.

СЛЕДСТВИЕ 2.7. Для любых натуральных а и b, если или то

Доказательство. Предположим, что . Тогда, по теореме 2.6, существует такое натуральное с, что . В силу аксиомы IV

По аксиоме следовательно,

СЛЕДСТВИЕ 2.8. Для любых натуральных а и b, если а то

ТЕОРЕМА 2.9. Для любых натуральных выполняется одно и только одно из трех условий:

(для некоторого );

(для некоторого ).

Доказательство. Из следствия 2.5 вытекает, что не может выполняться более чем одно из трех условий.

В самом деле, если бы выполнялись условия , то что невозможно по следствию 2.5. Если бы выполнялись условия (а) и (7), то что невозможно. Если бы выполнялись условия , то что также противоречит следствию 2.5.

Теперь покажем, что выполняется хотя бы одно из условий . Фиксируем произвольное натуральное число а и обозначим через дизъюнкцию условий . Докажем индукцией по b верность формулы Верна формула . В самом деле, если , то либо либо а . Если где Следовательно, при выполняется условие (а) или условие

Предположим, что для некоторого числа верна формула

и покажем, что тогда верна формула . В самом деле, если выполняется условие (Р). Если выполняется условие (Р). Если же , то . В этом случае если то и, по аксиоме II, — выполняется условие (а). Так как , то, по теореме 2.6, существует такое, что . Если , то и из равенства по аксиоме II получаем — выполняется условие (y). Итак, в любом случае верна формула Согласно принципу индукции, формула верна для любого натурального b. Поскольку а фиксировалось произвольно, то утверждение теоремы верно для любых натуральных а и b.

ОПРЕДЕЛЕНИЕ. Разностью двух натуральных чисел а и b называется такое натуральное число k, что

Из теоремы 2.9 следует, что разность двух натуральных чисел а и b существует в том случае, когда выполнено условие (а) (при этом или . В случае выполнения условия (Р) разность чисел а и b не существует.

Легко показать, что если разность чисел а и b существует, то она единственна. В самом деле, если , то откуда, по закону сокращения для сложения, следует, что .

Единственное натуральное число, являющееся разностью чисел а и b, обозначают а — b.

<< Предыдущий параграф Следующий параграф >>
Оглавление